MacEwan DJ (2002) TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 14:477–492
Google Scholar
Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 12:49–62
Google Scholar
Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ. 10:45–65
Google Scholar
Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H et al (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 61:351–359
Google Scholar
Grell M, Wajant H, Zimmermann G, Scheurich P (1998) The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A. 95:570–575
Google Scholar
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
Article
Google Scholar
Wajant H, Siegmund D (2019) TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front Cell Dev Biol. 7:91
Google Scholar
Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol. 22:7512–7523
Google Scholar
Yang S, Wang J, Brand DD, Zheng SG (2018) Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 9:784
Google Scholar
Naudé PJW, den Boer JA, Luiten PGM, Eisel ULM (2011) Tumor necrosis factor receptor cross-talk. FEBS J. 278:888–898
Google Scholar
Chu W-M (2013) Tumor necrosis factor. Cancer Lett. 328:222–225
Google Scholar
Gorman JD, Sack KE, Davis JC (2002) Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor α. N Engl J Med. 346:1349–1356
Google Scholar
Mease PJ (2002) Tumour necrosis factor (TNF) in psoriatic arthritis: pathophysiology and treatment with TNF inhibitors. Ann Rheum Dis. 61:298–304
Google Scholar
Ware CF (2013) Protein therapeutics targeted at the TNF superfamily. Adv Pharmacol. 66:51–80
Google Scholar
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46:D1074–D1082
Google Scholar
Mease PJ (2007) Adalimumab in the treatment of arthritis. Ther Clin Risk Manag. 3:133–148
Google Scholar
Acosta-Felquer ML, Rosa J, Soriano ER (2016) An evidence-based review of certolizumab pegol in the treatment of active psoriatic arthritis: place in therapy. Open Access Rheumatol Res Rev. 8:37–44
Google Scholar
Mazumdar S, Greenwald D (2009) Golimumab. MAbs 1:422–431
Google Scholar
Klotz U, Teml A, Schwab M (2007) Clinical pharmacokinetics and use of infliximab. Clin Pharmacokinet. 46:645–660
Google Scholar
Hu S, Liang S, Guo H, Zhang D, Li H, Wang X et al (2013) Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J Biol Chem. 288:27059–27067
Google Scholar
Lee JU, Shin W, Son JY, Yoo K-Y, Heo Y-S (2017) Molecular basis for the neutralization of tumor necrosis factor α by certolizumab pegol in the treatment of inflammatory autoimmune diseases. Int J Mol Sci. 18:228
Google Scholar
Ono M, Horita S, Sato Y, Nomura Y, Iwata S, Nomura N (2018) Structural basis for tumor necrosis factor blockade with the therapeutic antibody golimumab. Protein Sci. 27:1038–1046
Google Scholar
Liang S, Dai J, Hou S, Su L, Zhang D, Guo H et al (2013) Structural basis for treating tumor necrosis factor α (TNFα)-associated diseases with the therapeutic antibody infliximab. J Biol Chem. 288:13799–13807
Google Scholar
Lu R-M, Hwang Y-C, Liu I-J, Lee C-C, Tsai H-Z, Li H-J et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 27:1
Google Scholar
Bonafede MMK, Gandra SR, Watson C, Princic N, Fox KM (2012) Cost per treated patient for etanercept, adalimumab, and infliximab across adult indications: a claims analysis. Adv Ther. 29:234–248
Google Scholar
Said C, Coleiro B, Zarb Adami M, Azzopardi LM, Serracino Inglott A (2013) Cost effectiveness of TNF-α inhibitors in rheumatoid arthritis. Int J Inflam. 2013:1–8
Google Scholar
Menegatti S, Bianchi E, Rogge L (2019) Anti-TNF therapy in spondyloarthritis and related diseases, impact on the immune system and prediction of treatment responses. Front Immunol. 10:382
Google Scholar
Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 295:2275–2285
Google Scholar
Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res. 28:235–242
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 25:1605–1612
Google Scholar
Rodrigues CHM, Myung Y, Pires DE V, Ascher DB (2019) mCSM-PPI2: predicting the effects of mutations on protein-protein interactions. Nucleic Acids Res. 47:W338–W344
Google Scholar
Pahari S, Li G, Murthy AK, Liang S, Fragoza R, Yu H et al (2020) SAAMBE-3D: predicting effect of mutations on protein-protein interactions. Int J Mol Sci. 21:2563
Google Scholar
Li M, Simonetti FL, Goncearenco A, Panchenko AR (2016) MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res. 44:W494–W501
Google Scholar
UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46:2699–2699
Google Scholar
Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B et al (2020) Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res. 48:D383–D388
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46:W296–W303
Google Scholar
Sukhwal A, Sowdhamini R (2015) PPCheck: a webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots. Bioinform Biol Insights. 9:141–151
Google Scholar
Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE (2019) Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 431:2197–2212
Google Scholar
Wang J, Youkharibache P, Zhang D, Lanczycki CJ, Geer RC, Madej T et al (2020) iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics. 36:131–135
Google Scholar
Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol. 429:365–371
Google Scholar
Schrödinger L, DeLano W (2020) PyMOL. http://www.pymol.org/pymol.
Google Scholar
Zhang N, Chen Y, Lu H, Zhao F, Alvarez RV, Goncearenco A et al (2020) MutaBind2: predicting the impacts of single and multiple mutations on protein-protein interactions. IScience. 23:100939
Google Scholar
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48:D845–D855
Google Scholar
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 35:4851–4853
Google Scholar
López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL (2017) PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 45:W222–W228
Google Scholar
Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics. 14(Suppl 3):S2
Google Scholar
Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J et al (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 10:e1003440
Google Scholar
Brender JR, Zhang Y (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput Biol. 11:e1004494
Google Scholar
Sirin S, Apgar JR, Bennett EM, Keating AE (2016) AB-Bind: antibody binding mutational database for computational affinity predictions. Protein Sci. 25:393–409
Google Scholar
Jordan CT, Cao L, Roberson EDO, Duan S, Helms CA, Nair RP et al (2012) Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet. 90:796–808
Google Scholar
Pires DEV, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 30:335–342
Google Scholar
Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA et al (2020) Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med. 8(4):e1166
Google Scholar
Nguyen MN, Pradhan MR, Verma C, Zhong P (2017) The interfacial character of antibody paratopes: analysis of antibody–antigen structures. Bioinformatics. 33:2971–2976
Google Scholar
J Brea-Fernandez A, Ferro M, Fernandez-Rozadilla C, Blanco A, Fachal L, Santamarina M et al (2011) An update of in silico tools for the prediction of pathogenesis in missense variants. Curr Bioinform. 6:185–198
Google Scholar
Erijman A, Rosenthal E, Shifman JM (2014) How structure defines affinity in protein-protein interactions. PLoS One. 9:e110085
Google Scholar
Peng H-P, Lee KH, Jian J-W, Yang A-S (2014) Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci U S A. 111:E2656–E2665
Google Scholar
Dalkas GA, Teheux F, Kwasigroch JM, Rooman M (2014) Cation-π, amino-π, π-π, and H-bond interactions stabilize antigen-antibody interfaces. Proteins. 82:1734–1746
Google Scholar
Mukai Y, Nakamura T, Yoshikawa M, Yoshioka Y, Tsunoda S, Nakagawa S et al (2010) Solution of the structure of the TNF-TNFR2 complex. Sci Signal. 3(ra83)
Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31:3812–3814
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249
Google Scholar
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 92:414–417
Google Scholar
Montes A, Perez-Pampin E, Narváez J, Cañete JD, Navarro-Sarabia F, Moreira V et al (2014) Association of FCGR2A with the response to infliximab treatment of patients with rheumatoid arthritis. Pharmacogenet Genomics. 24:238–245
Google Scholar
Koder S, Repnik K, Ferkolj I, Pernat C, Skok P, Weersma RK et al (2015) Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn’s disease patients. Pharmacogenomics. 16:191–204
Google Scholar
Morales-Lara MJ, Cañete JD, Torres-Moreno D, Hernández MV, Pedrero F, Celis R et al (2012) Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis. Jt Bone Spine. 279:591–596
Google Scholar
Miceli-Richard C, Comets E, Verstuyft C, Tamouza R, Loiseau P, Ravaud P et al (2008) A single tumour necrosis factor haplotype influences the response to adalimumab in rheumatoid arthritis. Ann Rheum Dis. 67:478–484
Google Scholar
Maxwell JR, Potter C, Hyrich KL, Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate, Barton A, Worthington J et al (2008) Association of the tumour necrosis factor-308 variant with differential response to anti-TNF agents in the treatment of rheumatoid arthritis. Hum Mol Genet. 17:3532–3538
Google Scholar