Raoult D, Ogata H, Audic S, Robert C, Suhre K, Drancourt M, Claverie JM (2003) Tropheryma whipplei Twist: a human pathogenic actinobacteria with a reduced genome. Genome Res 13(8):1800–1809 http://www.genome.org/cgi/doi/10.1101/gr.1474603
Article
Google Scholar
Keita AK, Raoult D, Fenollar F (2013) Tropheryma whipplei as a commensal bacterium. Future Microbiol 8(1):57–71. https://doi.org/10.2217/fmb.12.124
Article
Google Scholar
Dolmans RA, Boel CE, Lacle MM, Kusters JG (2017) Clinical manifestations, treatment, and diagnosis of Tropheryma whipplei infections. Clin Microbiol Rev 30(2):529–555. https://doi.org/10.1128/CMR.00033-16
Article
Google Scholar
Moos V, Schmidt C, Geelhaar A, Kunkel D, Allers K, Schinnerling K, Ignatius R (2010) Impaired immune functions of monocytes and macrophages in Whipple’s disease. Gastroenterology 138(1):210–220. https://doi.org/10.1053/j.gastro.2009.07.066
Article
Google Scholar
Lagier JC, Lepidi H, Raoult D, Fenollar F (2010) Systemic Tropheryma whipplei: clinical presentation of 142 patients with infections diagnosed or confirmed in a reference center. Medicine 89(5):337–345. https://doi.org/10.1097/MD.0b013e3181f204a8
Article
Google Scholar
Gorvel L, Al Moussawi K, Ghigo E, Capo C, Mege JL, Desnues B (2010) Tropheryma whipplei, the Whipple’s disease bacillus, induces macrophage apoptosis through the extrinsic pathway. Cell Death Dis 1(4):e34–e34. https://doi.org/10.1038/cddis.2010.11
Article
Google Scholar
Bentley SD, Maiwald M, Murphy LD, Pallen MJ, Yeats CA, Dover LG et al (2003) Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. Lancet 361(9358):637–644. https://doi.org/10.1016/S0140-6736(03)12597-4
Article
Google Scholar
Lagier JC, Fenollar F, Lepidi H, Raoult D (2011) Evidence of lifetime susceptibility to Tropheryma whipplei in patients with Whipple’s disease. J Antimicrob Chemother 66(5):1188–1189. https://doi.org/10.1093/jac/dkr032
Article
Google Scholar
Fenollar F, Rolain JM, Alric L, Papo T, Chauveheid MP, van de Beek D, Raoult D (2009) Resistance to trimethoprim/sulfamethoxazole and Tropheryma whipplei. Int J Antimicrob Agents 34(3):255–259. https://doi.org/10.1016/j.ijantimicag.2009.02.014
Article
Google Scholar
Joshi A, Kaushik V (2021) In-silico proteomic exploratory quest: crafting T-cell epitope vaccine against Whipple’s disease. Int J Pept Res Ther 27:169–179. https://doi.org/10.1007/s10989-020-10077-9
Article
Google Scholar
Zavala A, Naya H, Romero H, Musto H (2002) Trends in codon and amino acid usage in Thermotoga maritima. J Mol Evol 54(5):563–568. https://doi.org/10.1007/s00239-001-0040-y
Article
Google Scholar
Lafay B, Atherton JC, Sharp PM (2000) Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 146(4):851–860. https://doi.org/10.1099/00221287-146-4-851
Article
Google Scholar
Romero H, Zavala A, Musto H (2000) Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28(10):2084–2090. https://doi.org/10.1093/nar/28.10.2084
Article
Google Scholar
Sharma P, Sharma P, Ahmad S, Kumar A (2022) Chikungunya virus vaccine development: through computational proteome exploration for finding of HLA and cTAP binding novel epitopes as vaccine candidates. Int J Pept Res Ther 28(2):1–15. https://doi.org/10.1007/s10989-021-10347-0
Article
Google Scholar
Joshi A, Ray NM, Singh J, Upadhyay AK, Kaushik V (2022) T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. Netw Model Anal Health Inform Bioinform 11(1):1–10. https://doi.org/10.1007/s13721-021-00339-x
Article
Google Scholar
Daniel E, Onwukwe GU, Wierenga RK, Quaggin SE, Vainio SJ, Krause M (2015) ATGme: open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinform 16(1):1–6
Article
Google Scholar
Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851
Article
Google Scholar
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48(W1):W449–W454
Article
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):1–7
Article
Google Scholar
Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tuffery P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(W1):W288–W293
Article
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(suppl_2):W363–W367
Article
Google Scholar
Antunes DA, Moll M, Devaurs D, Jackson KR, Lizée G, Kavraki LE (2017) DINC 2.0: a new protein–peptide docking webserver using an incremental approach. Cancer Res 77(21):e55–e57
Article
Google Scholar
Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero LV, Lam PVN et al (2019) Codon and codon-pair usage tables (CoCoPUTs): facilitating genetic variation analyses and recombinant gene design. J Mol Biol 431(13):2434–2441
Article
Google Scholar
Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U et al (2017) A new and updated resource for codon usage tables. BMC Bioinform 18(1):1–10
Article
Google Scholar
Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29
Article
Google Scholar
Butt AM, Nasrullah I, Qamar R, Tong Y (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infect 5(1):1–14
Article
Google Scholar
Seligmann H (2019) Localized context-dependent effects of the “ambush” hypothesis: more off-frame stop codons downstream of shifty codons. DNA Cell Biol 38(8):786–795
Article
Google Scholar
Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’codons. Nucleic Acids Res 14(19):7737–7749
Article
Google Scholar
Das S, Paul S, Dutta C (2006) Evolutionary constraints on codon and amino acid usage in two strains of human pathogenic actinobacteria Tropheryma whipplei. J Mol Evol 62(5):645–658
Article
Google Scholar
Joshi A, Joshi BC, Mannan MAU, Kaushik V (2020) Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked 19:100338. https://doi.org/10.1016/j.imu.2020.100338
Article
Google Scholar
Akhtar N, Joshi A, Singh B, Kaushik V (2020) Immuno-informatics quest against COVID-19/SARS-COV-2: determining putative T-cell epitopes for vaccine prediction. Infect Disord Drug Targets. https://doi.org/10.2174/1871526520666200921154149
Krishnan S, Joshi A, Akhtar N, Kaushik V (2021) Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 150:104728. https://doi.org/10.1016/j.micpath.2020.104728
Article
Google Scholar
Krishnan S, Joshi A, Kaushik V (2020) T cell epitope designing for dengue peptide vaccine using docking and molecular simulation studies. Mol Simul 46(10):787–795. https://doi.org/10.1080/08927022.2020.1772970
Article
Google Scholar
Kaushik V (2019) In silico identification of epitope-based peptide vaccine for Nipah virus. Int J Pept Res Ther 1-7. https://doi.org/10.1007/s10989-019-09917-0
Akhtar N, Joshi A, Kaushik V, Kumar M, Mannan MAU (2021) In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb Pathog 155:104879. https://doi.org/10.1016/j.micpath.2021.104879
Article
Google Scholar
Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V (2021) An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genet Eng Biotechnol 19(1):1–11. https://doi.org/10.1186/s43141-021-00220-4
Article
Google Scholar
Sharma P, Kaur R, Upadhyay AK, Kaushik V (2020) In-silico prediction of peptide based vaccine against Zika virus. Int J Pept Res Ther 26(1):85–91. https://doi.org/10.1007/s10989-019-09818-2
Article
Google Scholar
Akhtar N, Joshi A, Singh J, Kaushik V (2021) Design of a novel and potent multivalent epitope based human Cytomegalovirus peptide vaccine: an immunoinformatics approach. J Mol Liq 116586. https://doi.org/10.1016/j.molliq.2021.116586
Joshi A, Krishnan GS, Kaushik V (2020) Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. J Genet Eng Biotechnol 18(1):1–8. https://doi.org/10.1186/s43141-020-00095-x
Article
Google Scholar
Joshi A, Pathak DC, Mannan MAU, Kaushik V (2021) In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Netw Model Anal Health Inform Bioinform 10(1):1–12. https://doi.org/10.1007/s13721-021-00315-5
Article
Google Scholar