Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. https://doi.org/10.1136/bjo.2005.081224
Article
Google Scholar
Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013
Article
Google Scholar
Liu C, Nongpiur ME, Cheng C-Y, Khor C-C, Yu M, Husain R et al (2021) Evaluation of primary angle-closure glaucoma susceptibility loci for estimating angle closure disease severity. Ophthalmology 128:403–409. https://doi.org/10.1016/j.ophtha.2020.07.027
Article
Google Scholar
Chan EW, Li X, Tham Y-C, Liao J, Wong TY, Aung T et al (2016) Glaucoma in Asia: regional prevalence variations and future projections. Br J Ophthalmol 100:78–85. https://doi.org/10.1136/bjophthalmol-2014-306102
Article
Google Scholar
Sun X, Dai Y, Chen Y, Yu D-Y, Cringle SJ, Chen J et al (2017) Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res 57:26–45. https://doi.org/10.1016/j.preteyeres.2016.12.003
Article
Google Scholar
Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192
Article
Google Scholar
Unterlauft JD, Böhm MRR (2017) Role of the aging visual system in glaucoma. Ophthalmologe 114:108–113. https://doi.org/10.1007/s00347-016-0430-6
Article
Google Scholar
Vithana EN, Khor C-C, Qiao C, Nongpiur ME, George R, Chen L-J et al (2012) Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet 44:1142–1146. https://doi.org/10.1038/ng.2390
Article
Google Scholar
Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K et al (2016) Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet 48:556–562. https://doi.org/10.1038/ng.3540
Article
Google Scholar
Pulimeno P, Paschoud S, Citi S (2011) A role for ZO-1 and PLEKHA7 in recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol Chem 286:16743–16750. https://doi.org/10.1074/jbc.M111.230862
Article
Google Scholar
Nishimura T, Takeichi M (2009) Remodeling of the adherens junctions during morphogenesis. Curr Top Dev Biol 89:33–54. https://doi.org/10.1016/S0070-2153(09)89002-9
Article
Google Scholar
Hong S, Troyanovsky RB, Troyanovsky SM (2010) Spontaneous assembly and active disassembly balance adherens junction homeostasis. Proc Natl Acad Sci U S A 107:3528–3533. https://doi.org/10.1073/pnas.0911027107
Article
Google Scholar
Heimark RL, Kaochar S, Stamer WD (2002) Human Schlemm’s canal cells express the endothelial adherens proteins, VE-cadherin and PECAM-1. Curr Eye Res 25:299–308. https://doi.org/10.1076/ceyr.25.5.299.13495
Article
Google Scholar
Vijzelaar R, Waller S, Errami A, Donaldson A, Lourenco T, Rodrigues M et al (2013) Deletions within COL11A1 in type 2 stickler syndrome detected by multiplex ligation-dependent probe amplification (MLPA). BMC Med Genet 14:48. https://doi.org/10.1186/1471-2350-14-48
Article
Google Scholar
Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD et al (1996) A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet 5:1339–1343. https://doi.org/10.1093/hmg/5.9.1339
Article
Google Scholar
Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, Kääriäinen H et al (1999) Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet 65:974–983. https://doi.org/10.1086/302585
Article
Google Scholar
Richards AJ, McNinch A, Whittaker J, Treacy B, Oakhill K, Poulson A et al (2012) Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations. Eur J Hum Genet 20:552–558. https://doi.org/10.1038/ejhg.2011.223
Article
Google Scholar
Richards AJ, McNinch A, Martin H, Oakhill K, Rai H, Waller S et al (2010) Stickler syndrome and the vitreous phenotype: mutations in COL2A1 and COL11A1. Hum Mutat 31:E1461–E1471. https://doi.org/10.1002/humu.21257
Article
Google Scholar
Awadalla MS, Thapa SS, Hewitt AW, Burdon KP, Craig JE (2013) Association of genetic variants with primary angle closure glaucoma in two different populations. PLoS One 8:e67903. https://doi.org/10.1371/journal.pone.0067903
Article
Google Scholar
Chen Y, Chen X, Wang L, Hughes G, Qian S, Sun X (2014) Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population. Invest Ophthalmol Vis Sci 55:3797–3802. https://doi.org/10.1167/iovs.14-14370
Article
Google Scholar
Duvesh R, Verma A, Venkatesh R, Kavitha S, Ramulu PY, Wojciechowski R et al (2013) Association study in a South Indian population supports rs1015213 as a risk factor for primary angle closure. Invest Ophthalmol Vis Sci 54:5624–5628. https://doi.org/10.1167/iovs.13-12186
Article
Google Scholar
Saccà SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123:458–463. https://doi.org/10.1001/archopht.123.4.458
Article
Google Scholar
Li S, Shao M, Li Y, Li X, Wan Y, Sun X et al (2020) Relationship between oxidative stress biomarkers and visual field progression in patients with primary angle closure glaucoma. Oxid Med Cell Longev 2020:2701539. https://doi.org/10.1155/2020/2701539
Article
Google Scholar
Qin Y, Feng X, Luo H, Liu S, Wang X, Wang X et al (2022) Association between plasma free fatty acid levels and primary angle-closure glaucoma based on a mass spectrometry metabolomics analysis. Acta Ophthalmol 100:e204–e212. https://doi.org/10.1111/aos.14874
Article
Google Scholar
Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-h
Article
Google Scholar
Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J et al (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313. https://doi.org/10.1038/ki.1996.186
Article
Google Scholar
Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363. https://doi.org/10.1016/s0076-6879(94)33041-7
Article
Google Scholar
Bar-Or D, Lau E, Winkler J, v. (2000) A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J Emerg Med 19:311–315. https://doi.org/10.1016/s0736-4679(00)00255-9
Article
Google Scholar
Zhang N, Wang J, Chen B, Li Y, Jiang B (2020) Prevalence of primary angle closure glaucoma in the last 20 years: a meta-analysis and systematic review. Front Med (Lausanne) 7:624179. https://doi.org/10.3389/fmed.2020.624179
Article
Google Scholar
Kondkar AA (2021) Updates on genes and genetic mechanisms implicated in primary angle-closure glaucoma. Appl Clin Genet 14:89–112. https://doi.org/10.2147/TACG.S274884
Article
Google Scholar
Rao PV, Peterson YK, Inoue T, Casey PJ (2008) Effects of pharmacologic inhibition of protein geranylgeranyltransferase type I on aqueous humor outflow through the trabecular meshwork. Invest Ophthalmol Vis Sci 49:2464–2471. https://doi.org/10.1167/iovs.07-1639
Article
Google Scholar
Day AC, Luben R, Khawaja AP, Low S, Hayat S, Dalzell N et al (2013) Genotype-phenotype analysis of SNPs associated with primary angle closure glaucoma (rs1015213, rs3753841 and rs11024102) and ocular biometry in the EPIC-Norfolk Eye Study. Br J Ophthalmol 97:704–707. https://doi.org/10.1136/bjophthalmol-2012-302969
Article
Google Scholar
Nongpiur ME, Wei X, Xu L, Perera SA, Wu R-Y, Zheng Y et al (2013) Lack of association between primary angle-closure glaucoma susceptibility loci and the ocular biometric parameters anterior chamber depth and axial length. Invest Ophthalmol Vis Sci 54:5824–5828. https://doi.org/10.1167/iovs.13-11901
Article
Google Scholar
Wan Y, Li S, Gao Y, Tang L, Cao W, Sun X (2019) COL11A1 polymorphisms are associated with primary angle-closure glaucoma severity. J Ophthalmol 2019:2604386. https://doi.org/10.1155/2019/2604386
Article
Google Scholar
Shi H, Zhu R, Hu N, Shi J, Zhang J, Jiang L et al (2013) An extensive replication study on three new susceptibility loci of primary angle closure glaucoma in Han Chinese: Jiangsu eye study. J Ophthalmol 2013:641596. https://doi.org/10.1155/2013/641596
Article
Google Scholar
Nongpiur ME, Cheng C-Y, Duvesh R, Vijayan S, Baskaran M, Khor C-C et al (2018) Evaluation of primary angle-closure glaucoma susceptibility loci in patients with early stages of angle-closure disease. Ophthalmology 125:664–670. https://doi.org/10.1016/j.ophtha.2017.11.016
Article
Google Scholar
Thangavelu L, Che Mat Nor SM, Abd Aziz D, Sulong S, Tin A, Ahmad Tajudin LS (2021) Genetic markers PLEKHA7, ABCC5, and KALRN are not associated with the progression of primary angle closure glaucoma (PACG) in Malays. Cureus 13:e18823. https://doi.org/10.7759/cureus.18823
Article
Google Scholar
Nucci C, di Pierro D, Varesi C, Ciuffoletti E, Russo R, Gentile R et al (2013) Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis 19:1841–1846
Google Scholar
Goyal A, Srivastava A, Sihota R, Kaur J (2014) Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res 39:823–829. https://doi.org/10.3109/02713683.2011.556299
Article
Google Scholar
Chang D, Sha Q, Zhang X, Liu P, Rong S, Han T et al (2011) The evaluation of the oxidative stress parameters in patients with primary angle-closure glaucoma. PLoS One 6:e27218. https://doi.org/10.1371/journal.pone.0027218
Article
Google Scholar
Mumcu UY, Kocer I, Ates O, Alp HH (2016) Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int J Ophthalmol 9:1518–1520. https://doi.org/10.18240/ijo.2016.10.24
Article
Google Scholar
Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182. https://doi.org/10.2174/0929867043365323
Article
Google Scholar
Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008
Google Scholar
de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26:202–226. https://doi.org/10.1016/s0891-5849(98)00196-8
Article
Google Scholar
Alderman CJJ, Shah S, Foreman JC, Chain BM, Katz DR (2002) The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic Biol Med 32:377–385. https://doi.org/10.1016/s0891-5849(01)00735-3
Article
Google Scholar
Yağci R, Gürel A, Ersöz I, Keskin UC, Hepşen IF, Duman S et al (2006) Oxidative stress and protein oxidation in pseudoexfoliation syndrome. Curr Eye Res 31:1029–1032. https://doi.org/10.1080/02713680601001319
Article
Google Scholar
Lippi G, Montagnana M, Guidi GC (2006) Albumin cobalt binding and ischemia modified albumin generation: an endogenous response to ischemia? Int J Cardiol 108:410–411. https://doi.org/10.1016/j.ijcard.2005.03.040
Article
Google Scholar
Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002
Article
Google Scholar
Yang X, Hondur G, Tezel G (2016) Antioxidant treatment limits neuroinflammation in experimental glaucoma. Invest Ophthalmol Vis Sci 57:2344–2354. https://doi.org/10.1167/iovs.16-19153
Article
Google Scholar
Tezel G, Luo C, Yang X (2007) Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 48:1201–1211. https://doi.org/10.1167/iovs.06-0737
Article
Google Scholar
Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D (2007) Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci 48:705–714. https://doi.org/10.1167/iovs.06-0810
Article
Google Scholar
Li S, Chen Y, Shao M, Tang L, Sun X, Cao W (2017) Association of plasma complement C3 levels with primary angle-closure glaucoma in older women. Invest Ophthalmol Vis Sci 58:682–689. https://doi.org/10.1167/iovs.16-20675
Article
Google Scholar
Kumar DM, Agarwal N (2007) Oxidative stress in glaucoma: a burden of evidence. J Glaucoma 16:334–343. https://doi.org/10.1097/01.ijg.0000243480.67532.1b
Article
Google Scholar
Chrysostomou V, Rezania F, Trounce IA, Crowston JG (2013) Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 13:12–15. https://doi.org/10.1016/j.coph.2012.09.008
Article
Google Scholar
Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN (2004) An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol 138:S19–S31. https://doi.org/10.1016/j.ajo.2004.04.058
Article
Google Scholar
Khazaeni B, Khazaeni L (2022) Acute Closed Angle Glaucoma. Treasure Island (FL)
Moreno MC, Campanelli J, Sande P, Sánez DA, Keller Sarmiento MI, Rosenstein RE (2004) Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 37:803–812. https://doi.org/10.1016/j.freeradbiomed.2004.06.001
Article
Google Scholar
Liu Q, Ju W-K, Crowston JG, Xie F, Perry G, Smith MA et al (2007) Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 48:4580–4589. https://doi.org/10.1167/iovs.07-0170
Article
Google Scholar
Li G-Y, Osborne NN (2008) Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 1188:35–43. https://doi.org/10.1016/j.brainres.2007.10.073
Article
Google Scholar
Li A-F, Tane N, Roy S (2004) Fibronectin overexpression inhibits trabecular meshwork cell monolayer permeability. Mol Vis 10:750–757
Google Scholar
Wang H, Li M, Zhang Z, Xue H, Chen X, Ji Y (2019) Physiological function of myocilin and its role in the pathogenesis of glaucoma in the trabecular meshwork (Review). Int J Mol Med 43:671–681. https://doi.org/10.3892/ijmm.2018.3992
Article
Google Scholar
Izzotti A, Bagnis A, Saccà SC (2006) The role of oxidative stress in glaucoma. Mutat Res 612:105–114. https://doi.org/10.1016/j.mrrev.2005.11.001
Article
Google Scholar
McMonnies C (2018) Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optom 11:3–9. https://doi.org/10.1016/j.optom.2017.06.002
Article
Google Scholar
Hondur G, Göktas E, Yang X, Al-Aswad L, Auran JD, Blumberg DM et al (2017) Oxidative stress-related molecular biomarker candidates for glaucoma. Invest Ophthalmol Vis Sci 58:4078–4088. https://doi.org/10.1167/iovs.17-22242
Article
Google Scholar
Gericke A, Mann C, Zadeh JK, Musayeva A, Wolff I, Wang M et al (2019) Elevated intraocular pressure causes abnormal reactivity of mouse retinal arterioles. Oxid Med Cell Longev 2019:9736047. https://doi.org/10.1155/2019/9736047
Article
Google Scholar
Zadeh JK, Zhutdieva MB, Laspas P, Yuksel C, Musayeva A, Pfeiffer N et al (2019) Apolipoprotein E deficiency causes endothelial dysfunction in the mouse retina. Oxid Med Cell Longev 2019:5181429. https://doi.org/10.1155/2019/5181429
Article
Google Scholar
Harada C, Noro T, Kimura A, Guo X, Namekata K, Nakano T et al (2020) Suppression of oxidative stress as potential therapeutic approach for normal tension glaucoma. Antioxidants (Basel) 9. https://doi.org/10.3390/antiox9090874