Downie ML, Gallibois C, Parekh RS, Noone DG (2017) Nephrotic syndrome in infants and children: pathophysiology and management. Paediatr Int Child Health. 37:248–258. https://doi.org/10.1080/20469047.2017.1374003
Article
Google Scholar
Siddall EC, Radhakrishnan J (2012) The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 82:635–642. https://doi.org/10.1038/ki.2012.180
Article
Google Scholar
Bockenhauer D (2013) Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol 28:1153–1156. https://doi.org/10.1007/s00467-013-2435-6
Article
Google Scholar
Doucet A, Favre G, Deschênes G (2007) Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatr Nephrol 22:1983–1990. https://doi.org/10.1007/s00467-007-0521-3
Article
Google Scholar
Rodriguez-Iturbe B, Colic D, Parra G, Gutkowska J (1990) Atrial natriuretic factor in the acute nephritic and nephrotic syndromes. Kidney Int 38:512–517. https://doi.org/10.1038/ki.1990.233
Article
Google Scholar
Vande Walle JG, Donckerwolcke RA, van Isselt JW, Derkx FH, Joles JA, Koomans HA (1995) Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. Lancet 346:148–152. https://doi.org/10.1016/S0140-6736(95)91210-X
Article
Google Scholar
Ellis D (2015) Pathophysiology, Evaluation, and Management of Edema in Childhood Nephrotic Syndrome. Front Pediatr 3:111. https://doi.org/10.3389/fped.2015.00111
Article
Google Scholar
Peterson C, Madsen B, Perlman A, Chan AY, Myers BD (1998) Atrial natriuretic peptide and the renal response to hypervolemia in nephrotic humans. Kidney Int 34:825–831. https://doi.org/10.1038/ki.1988.256
Article
Google Scholar
Garin EH, Paul RV (1990) Atrial natriuretic factor in idiopathic minimal-lesion nephrotic syndrome. Child Nephrol Urol 10:65–67 PMID: 2147579
Google Scholar
Anderson S, Komers R, Brenner BM (2008) Renal and systemic manifestations of glomerular disease. Brenner BM, ed. Brenner and Rector's The Kidney, 8th edn. Saunders Elsvier, Philadelphia Chapter 26
Google Scholar
Vassalle C, Andreassi MG, Prontera C, Fontana M, Zyw L, Passino C, Emdin M (2007) Influence of ScaI and natriuretic peptide (NP) clearance receptor polymorphisms of the NP System on NP concentration in chronic heart failure. Clin Chem 53:1886–1890. https://doi.org/10.1373/clinchem.2007.088302
Article
Google Scholar
Xue H, Wang S, Wang H, Sun K, Song X, Zhang W, Fu C, Han Y, Hui R (2008) Atrial natriuretic peptide gene promoter polymorphism is associated with left ventricular hypertrophy in hypertension. Clin Sci (Lond) 114:131–137. https://doi.org/10.1042/CS20070109
Article
Google Scholar
The primary nephrotic syndrome in children (1981) Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. Journal of Pediatrics; 98, 561–4. DOI: https://doi.org/10.1016/s0022-3476(81)80760-3
https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2021-Glomerular-Diseases-Guideline.pdf . Last accesed 15/10/2021.
Sarzani R, Dessì-Fulgheri P, Salvi F, Serenelli M, Spagnolo D, Cola G, Pupita M, Giantomassi L, Rappelli A (1999) A novel promoter variant of the natriuretic peptide clearance receptor gene is associated with lower atrial natriuretic peptide and higher blood pressure in obese hypertensives. J Hypertens 17:1301–1305. https://doi.org/10.1097/00004872-199917090-00010
Article
Google Scholar
Gruchala M, Ciećwierz D, Wasag B, Targoński R, Dubaniewicz W, Nowak A et al (2003) Association of the ScaI atrial natriuretic peptide gene polymorphism with nonfatal myocardial infarction and extent of coronary artery disease. Am Heart J 145:125–131. https://doi.org/10.1067/mhj.2003.52
Article
Google Scholar
Bae EH, Lee J, Ma SK, Kim SW (2009) Changes of atrial natriuretic Peptide system in rats with puromycin aminonucleoside-induced nephrotic syndrome. Korean J Physiol Pharmacol 13:1–7. https://doi.org/10.4196/kjpp.2009.13.1.1
Article
Google Scholar
Plum J, Mirzaian Y, Grabensee B (1996) Atrial natriuretic peptide, sodium retention, and proteinuria in nephrotic syndrome. Nephrol Dial Transpl 11:1034–1042 PMID: 8671965
Article
Google Scholar
Abassi Z, Weissman I, Karram T, Goltsman I, Hoffman A, Better OS, Winaver J (2013) Restoration of Renal Responsiveness to Atrial Natriuretic Peptide in Experimental Nephrotic Syndrome by Albumin Infusion. Am J Nephrol 38:292–299. https://doi.org/10.1159/000355014
Article
Google Scholar
Cataliotti A, Malatino LS, Jougasaki M, Zoccali C, Castellino P, Giacone G et al (2001) Circulating natriuretic peptide concentrations in patients with end-stage renal disease: role of brain natriuretic peptide as a biomarker for ventricular remodeling. Mayo Clin Proc. 76:1111–1119. https://doi.org/10.4065/76.11.1111
Article
Google Scholar
Ray EC, Rondon-Berrios H, Boyd CR, Kleyman TR (2015) Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv chronic kidney Dis 22:179–184. https://doi.org/10.1053/j.ackd.2014.11.006
Article
Google Scholar
Jovanovitsh O, Popovitsh-Rolovitsh M, Radoshevitsh P, Stankovitsh R, Dujitsh A, Gajitsh M et al (1995) Atrijumski natriuretski peptid kod dece s nefrotskim sindromom [Atrial natriuretic peptide in children with nephrotic syndrome]. Srp Arh Celok Lek 123(291-294):Serbian PMID: 16296241
Google Scholar
Bryan PM, Xu X, Dickey DM, Chen Y, Potter LR (2007) Renal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations. Am J Physiol Renal Physiol 292:F1636–F1644. https://doi.org/10.1152/ajprenal.00418.2006
Article
Google Scholar
Levy M (1997) Atrial natriuretic peptide: renal effects in cirrhosis of the liver. Semin Nephrol 17:520–529 PMID: 9353863
Google Scholar
Sahay M (2011) Urinary indices in nephrotic syndrome. Indian J Nephro 21:152–153. https://doi.org/10.4103/0971-4065.83027
Article
Google Scholar
Gurgoze MK, Gunduz Z, Poyrazoglu MH, Dursun I, Uzum K, Dusunsel R (2011) Role of sodium during formation of edema in children with nephrotic syndrome. Pediatrics International 53:50–56. https://doi.org/10.1111/j.1442-200X.2010.03192.x
Article
Google Scholar
Donmez O, Mir S, Ozyurek R, Cura A, Kabasakal C (2001) Inferior vena cava indices determine volume load in minimal lesion nephrotic syndrome. Pediatr Nephrol 16:251–255. https://doi.org/10.1007/s004670000536
Article
Google Scholar
Fuglestad A, Sangaralingham SJ, Cannone V, Scott CG, Burnett JC Jr (2018) P4450 A cardio-metabolic phenotype in carriers of NPPA (rs5086) and NPPB (rs198389) gene variants in the general population: the dominant role of ANP. Eur Heart J 39:ehy563.P4450. https://doi.org/10.1093/eurheartj/ehy563.P4450
Article
Google Scholar
Nannipieri M, Manganiello M, Pezzatini A, De Bellis A, Seghieri G, Ferrannini E (2001) Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension. Hypertension 37:1416–1422. https://doi.org/10.1161/01.hyp.37.6.1416
Article
Google Scholar
Zorc-Plesković R, Bidovec M, Bregar D, Milutinović A, Terzić R, Teran N (2004) The ScaI gene polymorphism of the atrial natriuretic factor and essential arterial hypertension in childhood. Coll Antropol 28:617–621 PMID: 15666592
Google Scholar
Ramasawmy R, Kotea N, Lu CY, Sayada C, Baligadoo S, Krishnamoorthy R (1992) Investigation of the polymorphic ScaI site by a PCR-based assay at the human atrial natriuretic peptides (hANP) gene locus. Hum Genet 90:323–324. https://doi.org/10.1007/BF00220093
Article
Google Scholar
Okwueze MI, Opgenorth TJ, von Geldern TW, Vari RC (1994) Atrial natriuretic peptide and glomerular hyperfiltration during onset of spontaneous diabetes mellitus. Am J Physiol 266:572–577. https://doi.org/10.1152/ajpregu.1994.266.2.R572
Article
Google Scholar
Ogawa N, Komura H, Kuwasako K, Kitamura K, Kato J (2015) Plasma levels of natriuretic peptides and development of chronic kidney disease. BMC Nephrol 16:171. https://doi.org/10.1186/s12882-015-0163-9
Article
Google Scholar