Jawahar M, Karthikeyan AVP, Vijai D, Maharajan M, Ravipaul S, Jeyseelan M (2008) In vitro plant regeneration from different explants of cardiospermum helicacabum L. Int J Biol Chem Sci 2(1):14–20
Google Scholar
Tripathi L, Tripathi JN (2003) Role of biotechnology in medicinal plants. Trop J Pharm Res 2:243–253
Google Scholar
Koca A, Aasim M (2015) Establishment of efficient micro propagation system in Bishops weed ( Trachyspermum ammi) using seed as explant. J Anim Plant Sci 25:478–484
Google Scholar
Purohit S, Kothari SL (2007) Direct somatic embryogenesis from cotyledon and cotyledonary node explants in bishops weed Trachyspermum Ammi (L.) sprague. In Vitro Cell Dev Biol Plant 43(2):154–158. https://doi.org/10.1007/s11627-007-9039-4
Article
Google Scholar
Salehi M, Hosseini B, Jabbarzade Z (2014) High–frequency in vitro plantlet regeneration from apical bud as a novel explant of Carum copticum L. Asian Pac J Trop Biomed 4:424–428
Article
Google Scholar
Teymourian H, Ebrahimi MA, Tohidfar M, Farsaloon N, Zarinpanjeh N (2017) In vitro plantlet regeneration from callus culture of Trachyspermum copticum. Plant Tissue Cult & Biotech 27(1):13–20. https://doi.org/10.3329/ptcb.v27i1.35007
Article
Google Scholar
Nomani M, Sadat Noori SA, Tohidfar M, Ramshini H (2021) Regeneration of Trachyspermum ammi L. Sprague ecotypes via indirect somatic embryogenesis using hypocotyl and epicotyl explants. Indian J Exp Biol 58:263–269
Google Scholar
Rao MS, Purohit SD (2006) In vitro shoot bud differentiation and plantlet regeneration in (Celastrus Paniculatus). Biologica Plantrum 50(4):501–506. https://doi.org/10.1007/s10535-006-0079-0
Article
Google Scholar
Siddique I, Javed SB, Al-Othman MR, Anis M (2013) Stimulation of in vitro organogenesis from epicotyl explants and successive micro propagation round in Cassia angustifolia Vahl: an important source of sennosides. Agroforestry Systems 87(3):583–590. https://doi.org/10.1007/s10457-012-9578-5
Article
Google Scholar
Udayakumar R, Choi CW, Kim KT, Kim SC, Kasthurirengan S, Mariashibu TS, Sahaya Rayan JJ, Ganapathi A (2013) In vitro plant regeneration from epicotyl explants of Withania Somnifera (L.) Dunal. J Med Plants Res 7:43–52
Google Scholar
Kumar J, Gupta PK (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnol Rep 2(2):93–112. https://doi.org/10.1007/s11816-008-0059-2
Article
Google Scholar
Urbanova M, Kosuth J, Cellarova E (2006) Genetic and biochemical analysis of Hypericum perforatum L. Plants regenerated after cryopreservation. Plant Cell Rep 25(2):140–147. https://doi.org/10.1007/s00299-005-0050-0
Article
Google Scholar
Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647
Google Scholar
Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integrative Plant Biol 49(2):179–186. https://doi.org/10.1111/j.1744-7909.2007.00395.x
Article
Google Scholar
Kappers IF, Aharoni A, Van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309(5743):2070–2072. https://doi.org/10.1126/science.1116232
Article
Google Scholar
Chen F, Tholl D, Bohlmann G, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66(1):212–229. https://doi.org/10.1111/j.1365-313X.2011.04520.x
Article
Google Scholar
Lima AS, Schimmel J, Lukas B, Novak J, Barroso JG, Figueiredo AC, Pedro PG, Degenhardt J, Trindade H (2013) Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae). Planta 238(1):191–204. https://doi.org/10.1007/s00425-013-1884-2
Article
Google Scholar
Poulose AJ, Croteau R (1978) Gamma-Terpinene synthetase: a key enzyme in the biosynthesis of aromatic monoterpenes. Arch Biochem Biophys 191(1):400–411. https://doi.org/10.1016/0003-9861(78)90104-2
Article
Google Scholar
Frick S, Kramell R, Kutchan TM (2007) Metabolic engineering with a morphine biosynthesis P450 in opium poppy surpasses breeding. Metab Eng 9(2):169–176. https://doi.org/10.1016/j.ymben.2006.10.004
Article
Google Scholar
Ziegler J, Voigtiander S, Schmidt J, Kramell R, Miersch O, Ammer C, Gesell A, Kutchan TM (2006) Comparative transcript and alkaloid profiling in papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J 48(2):177–192. https://doi.org/10.1111/j.1365-313X.2006.02860.x
Article
Google Scholar
Ishikawa T, Sega Y, Kitajima J (2001) Water-soluble constituents of Ajowan. Chem Pharm Bull 49(7):840–844. https://doi.org/10.1248/cpb.49.840
Article
Google Scholar
Jeet K, Devi N, Narender T, Sunil T, Lalit S, Raneev T (2012) Trachyspermum ammi: Acomperhensive review. Int Res J Pharm 3(5):133–138
Google Scholar
Pandey S, Patel MK, Mishra A, Jha B (2016) In planta transformed Cumin (Cuminum cyminum L.) Plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PLoS One 11(7):1–18
Article
Google Scholar
Deguchi M, Bogush D, Weeden H, Spuhler Z, Potlakayala S, Kondo T, Zhang ZJ, Rudrabhatla S (2020) Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Scientific Reports 10:3504
Article
Google Scholar
Puc AY, Berzunza EA, Chan-Bacab MJ, Pena Rodriguez LM, Hernandez GG (2012) Agrobacterium- mediated transient transformation of Pentalinon andrieuxii Mull. Arg. Adv Biosci Biotechnol 3:256–258
Article
Google Scholar
Yadav SH, Sharma P, Strivastava A, Desai P, Shrivastava N (2014) Strain specific Agrobacterium-mediated genetic transformation of Bacopa monnieri. J Genet Eng Biotechnol 12(2):89–94. https://doi.org/10.1016/j.jgeb.2014.11.003
Article
Google Scholar
Koohzadi F, Omidi M, Solouki M, Mahdinejhad N (2016) Overexpression of TYDC2 in medicinal plant opium poppy to increase its medicinal alkaloids contents. Modern Genet J 7(4):343–352 (In Persian)
Google Scholar
Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Hosseini Khalifani B, Razavi K (2013) Metabolic engineering of morphinan alkaloids by overexpression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35(3):445–453
Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z (2017) Overexpression of SmMYC2 Increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8(1804). https://doi.org/10.3389/fpls.2017.01804
Jiang W, Fu X, Pan Q, Tang Y, Shen Q, Lv Z et al (2016) Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. BioMed Res Int 4:1–9
Google Scholar
Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, el. (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11(3):3298–3309. https://doi.org/10.4238/2012.September.12.13
Article
Google Scholar
da Silva D, Imakawa AM, de Souza CS, Barbosa Sampaio PDT (2018) In vitro culture of zygotic embryos and seeds of Caesalpinia ferrea Martius. Hoehnea 45(4):663–668. https://doi.org/10.1590/2236-8906-65/2018
Article
Google Scholar
Oh MJ, Na HR, Choi HK, Liu JR, Kim SW (2010) High frequency plant regeneration system of Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures. Plant Biotechnol Rep 4(2):125–128. https://doi.org/10.1007/s11816-010-0126-3
Article
Google Scholar
Prudente DOD, Paiva R, Carpentier S, Swennen R, Crlota Nery F, Cautinho Silva L, Panis B (2017) Characterization of the formation of somatic embryos from mature zygotic embryos of Passiflora ligularis Juss. Plant Cell Tissue Organ cult 131:95–107
Google Scholar
Raomai SH, Kumaria S, Tandon P (2014) Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant, Paris polyphylla Sm. Plant Cell Tissue Organ cult 118(3):445–455. https://doi.org/10.1007/s11240-014-0496-2
Article
Google Scholar
Murashinge T, Skoog F (1962) A revised medium for rapid growth of and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Article
Google Scholar
Gamborg OL, Miller RA, Ojima O (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp Cell Ress 50(1):151–158. https://doi.org/10.1016/0014-4827(68)90403-5
Article
Google Scholar
Nomani M, Sadat Noori S, Tohidfar M, Ramshini H (2019) Overexpression of TPS2 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype). Ind Crop Prod 130:63–70. https://doi.org/10.1016/j.indcrop.2018.12.076
Article
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusion: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Eur Mol Biol Organization J 6(13):3901–3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
Article
Google Scholar
Gedikoğlu A, Sökmen M, Çivit A (2019) Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci Nutr 7(5):1704–1714. https://doi.org/10.1002/fsn3.1007
Article
Google Scholar
Kowalczyk T, Wieczfinska J, Skała E, Sliwinski T, Sitarek P (2020) Transgenesis as a tool for the efficient production of selected secondary metabolites from plant in vitro cultures. Plants 9(2):132. https://doi.org/10.3390/plants9020132
Article
Google Scholar
Pandey S, Mishra A, Kumar Patel M, Jha B (2013) An efficient method for agrobacterium–mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Appl Biochem Biotechnol 171(1):1–9. https://doi.org/10.1007/s12010-013-0349-1
Article
Google Scholar
Rosa YB, Dornelas MC (2011) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tissue Organ Cult 108:91–99
Article
Google Scholar
Barky F (2008) Zygotic embryo rescue in bananas. Fruits 63:111–115
Article
Google Scholar
Uma S, Lakshmi S, Saraswathi MS, Akbar A, Mustaffa M (2011) Embryo rescue and plant regeneration in bananana (Musa spp.). Plant Cell Tissue Organ Cult 105(1):105–111. https://doi.org/10.1007/s11240-010-9847-9
Article
Google Scholar
Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotecnol Adv 34(4):441–449. https://doi.org/10.1016/j.biotechadv.2016.02.004
Article
Google Scholar
Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J (2014) Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metab. Eng 23:136–144. https://doi.org/10.1016/j.ymben.2014.03.003
Article
Google Scholar
Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R (2016) Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J 14(7):1619–1632. https://doi.org/10.1111/pbi.12525
Article
Google Scholar
Kang YM, Park DJ, Lee DG, Song HJ, Kang SM, Min JY, Moon BC, Lee CK, Jeon KS, Shivappakarigar C et al (2015) Over expression of IPP isomerase and limonene synthase enzymes in Mentha spicata and their influence on the terpenoid metabolism. Rom Biotechnol Lett 20:10358–10368
Google Scholar
Hoseini B, Sharifi Sirchi G (2014) Transformation and expression of recombinant insulin monomer in Arabidopsis plant. Genet Eng Biosafety J 3(2):96–105 (In Persian)
Google Scholar
Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2009) Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep 29:133–141
Article
Google Scholar
Ma R, Yu Z, Cai Q, Li H, Dong Y, Oksman-Caldentey KM, Rischer H (2020) Agrobacterium-mediated genetic transformation of the medicinal plant Veratrum dahuricum. Plants 9(2):191. https://doi.org/10.3390/plants9020191
Article
Google Scholar
Dai S, Zheng P, Marmay P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding 7(1):25–33. https://doi.org/10.1023/A:1009687511633
Article
Google Scholar
Alvarez JM, Canessa P, Mancilla RA, Polanco R, Santibáñez PA, Vicuña R (2009) Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol 46(1):104–111. https://doi.org/10.1016/j.fgb.2008.10.002
Article
Google Scholar
Cardoso JC, Oliveira MEBS, Cardoso FCI (2019) Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira 37(2):124–132. https://doi.org/10.1590/s0102-053620190201
Article
Google Scholar
Vamenani R, Pakdin-Parizi A, Mortazavi M, Gholami Z (2019) Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Trachyspermum ammi L. for the efficient production of thymol. Biotechnol Appl Biochem 67(3):389–395
Google Scholar
Niazian M, Sadat-Noori S, Tohidfar M, Galuszka P, Mortazavian M (2019) Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crop Prod 132:29–40. https://doi.org/10.1016/j.indcrop.2019.02.005
Article
Google Scholar
Sharma A, Verma P, Mathur A, Mathur AK (2018) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 225:425–435
Article
Google Scholar