Burgers P.M.J., Kunkel T.A. 2017, Eukaryotic DNA Replication Fork. Annu Rev Biochem. 20;86:417-438. Review.
Zhivotovsky B, Orrenius S (2010) Cell cycle and cell death in disease: past, present and future. J Intern Med. 268(5):395–409
Article
Google Scholar
Eyfjord J.E., Bodvarsdottir S.K. 2005, Genomic instability and cancer: networks involved in response to DNA damage. Mutat Res. 30;592(1-2):18-28. Review.
Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228 Review
Article
Google Scholar
Ciccia A., Elledge S.J. 2010, The DNA damage response: making it safe to play with knives. Mol Cell. 22;40(2):179-204. Review.
Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448 Review
Article
Google Scholar
Bell S.P., Stillman B. 1992, ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 14;357(6374):128-134.
Dhar S.K., Delmolino L., Dutta A. 2001, Architecture of the human origin recognition complex. J Biol Chem. 3;276(31):29067-29071.
Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci 106(48):20240–20245
Article
Google Scholar
Fragkos M, Ganier O, Coulombe P, Méchali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16(6):360–374
Article
Google Scholar
Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161(3):513–525
Article
Google Scholar
Takeda DY, Dutta A (2005) DNA replication and progression through S phase. Oncogene 24(17):2827–2843
Article
Google Scholar
Kelman Z. 1997, PCNA: structure, functions and interactions. Oncogene. 13;14(6):629-640. Review.
Tanaka S, Araki H (2010) Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 119(6):565–574
Article
Google Scholar
Yeeles J.T.P., Janska A., Early A., Diffley J.F. 2017, How the eukaryotic replisome Achieves Rapid and Efficient DNA Replication. Mol Cell. 5;65(1):105-116.
Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435
Article
Google Scholar
Warmerdam DO, Kanaar R (2010) Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res. 704(1-3):2–11 Review
Article
Google Scholar
Byun T.S., Pacek M., Yee M.C., Walter J.C., Cimprich KA 2005, Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 1;19(9):1040-1052.
Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9(8):616–627 Review
Article
Google Scholar
Carr A.M., Moudjou M., Bentley N.J., Hagan I.M. 1995, The chk1 pathway is required to prevent mitosis following cell-cycle arrest at 'start'. Curr Biol. 1;5(10):1179-1190.
Sanjiv K., Hagenkort A., Calderón-Montaño J.M., Koolmeister T., Reaper P.M., Mortusewicz O., Jacques S.A., Kuiper R.V., Schultz N., Scobie M., Charlton P.A., Pollard J.R., Berglund U.W., Altun M., Helleday T. 2016, Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Rep. 20;17(12):3407-3416.
Greenfeder SA, Newlon CS (1992) Replication forks pause at yeast centromeres. Mol Cell Biol 12(9):4056–4066
Article
Google Scholar
Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12(6):1525–1536
Article
Google Scholar
Caspari T, Carr AM (1999) DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81(1-2):173–181 Review
Article
Google Scholar
Zeng Y, Piwnica-Worms H (1999) DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol. 19(11):7410–7419
Article
Google Scholar
Bentley NJ, Holtzman DA, Flaggs G, Keegan KS, DeMaggio A, Ford JC, Hoekstra M, Carr AM (1996) The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 15(23):6641–6651
Article
Google Scholar
Chapman CR, Evans ST, Carr AM, Enoch T (1999) Requirement of sequences outside the conserved kinase domain of fission yeast Rad3p for checkpoint control. Mol Biol Cell 10(10):3223–3238
Article
Google Scholar
Van C., Yan S., Michael W.M., Waga S., Cimprich K.A. 2010, Continued primer synthesis at stalled replication forks contributes to checkpoint activation. J Cell Biol. 19;189(2):233-246.
Bermudez V.P., Lindsey-Boltz L.A., Cesare A.J., Maniwa Y., Griffith J.D., Hurwitz J., Sancar A. 2003, Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A. 18;100(4):1633-1638.
Xu Y.J., Davenport M., Kelly T.J. 2006, Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev. 15;20(8):990-1003.
Yue M., Singh A., Wang Z., Xu Y.J. 2011, The phosphorylation network for efficient activation of the DNA replication checkpoint in fission yeast. J Biol Chem. 1;286(26):22864-22874.
de Bruin R.A., Wittenberg C. 2009, All eukaryotes: before turning off G1-S transcription, please check your DNA. Cell Cycle. 15;8(2):214-217. Review.
Caetano C., Klier S., de Bruin R.A. 2011, Phosphorylation of the MBF repressor Yox1p by the DNA replication checkpoint keeps the G1/S cell-cycle transcriptional program active. PLoS One. 16;6(2):e17211.
Jeon Y., Ko E., Lee K.Y., Ko M.J., Park S.Y., Kang J., Jeon C.H., Lee H., Hwang D.S. 2011, TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem. 18;286(7):5414-5422.
Yamamoto RR, Axton JM, Yamamoto Y, Saunders RD, Glover DM, Henderson DS (2000) The Drosophila mus101 gene, which links DNA repair, replication and condensation of heterochromatin in mitosis, encodes a protein with seven BRCA1 C-terminus domains. Genetics 156(2):711–721
Google Scholar
Enoch T, Carr AM, Nurse P (1992) Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev 6(11):2035–2046
Article
Google Scholar
Enoch T, Nurse P (1990) Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60(4):665–673
Article
Google Scholar
Enoch T., Nurse P. 1991, Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell. 14;65(6):921-923. Review.
Saka Y., Yanagida M. 1993, Fission yeast cut5+, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4+. Cell. 30;74(2):383-393.
Saka Y., Fantes P., Sutani T., McInerny C., Creanor J., Yanagida M. 1994, Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J. 15;13(22):5319-5329.
Sheldrick KS, Carr AM (1993) Feedback controls and G2 checkpoints: fission yeast as a model system. Bioessays 15(12):775–782 Review
Article
Google Scholar
Samejima I, Matsumoto T, Nakaseko Y, Beach D, Yanagida M (1993) Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis. J Cell Sci 105(Pt 1):135–143
Google Scholar
McFarlane RJ, Carr AM, Price C (1997) Characterisation of the Schizosaccharomyces pombe rad4/cut5 mutant phenotypes: dissection of DNA replication and G2 checkpoint control function. Mol Gen Genet 255(3):332–340
Article
Google Scholar
Ransom M, Dennehey BK, Tyler JK (2010) Chaperoning histones during DNA replication and repair. Cell 140:183–195
Article
Google Scholar
Eitoku M, Sato L, Senda T, Horikoshi M (2008) Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell Mol Life Sci 65(3):414–444 Review
Article
Google Scholar
Prochasson P., Florens L., Swanson S.K., Washburn M.P., Workman J.L. 2005, The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 1;19(21):2534-2539.
Lee BS, Grewal SI, Klar AJ (2004) Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast. Mol Cell Biol. 24(22):9813–9822
Article
Google Scholar
Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 24(19):8342–8355
Article
Google Scholar
McFarlane R.J., Mian S., Dalgaard J.Z. 2010, The many facets of the Tim-Tipin protein families' roles in chromosome biology. Cell Cycle. 15;9(4):700-705.
Noguchi E, Noguchi C, Du LL, Russell P (2003) Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol Cell Biol 23(21):7861–7874
Article
Google Scholar
Shimmoto M, Matsumoto S, Odagiri Y, Noguchi E, Russell P, Masai H (2009) Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells 14(6):669–682
Article
Google Scholar
Dalgaard J.Z., Klar A.J. 2000, swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell. 15;102(6):745-751.
Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJ, Bousset K, Furuya K, Diffley JF, Carr AM, Elledge SJ (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958–965
Article
Google Scholar
Chini C.C., Chen J. 2003, Human claspin is required for replication checkpoint control. J Biol Chem. 8;278(32):30057-30062.
Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6(4):839–849
Article
Google Scholar
Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3(11):966–972
Article
Google Scholar
Hodgson B, Calzada A, Labib K (2007) Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 18(10):3894–3902
Article
Google Scholar
Petermann E, Helleday T, Caldecott KW (2008) Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 19(6):2373–2378
Article
Google Scholar
Szyjka S.J., Viggiani C.J., Aparicio O.M. 2005, Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell. 2;19(5):691-697.
Tourrière H., Versini G., Cordón-Preciado V., Alabert C., Pasero P. 2005, Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell. 2;19(5):699-706.
Noguchi C, Rapp JB, Skorobogatko YV, Bailey LD, Noguchi E (2012) Swi1 associates with chromatin through the DDT domain and recruits Swi3 to preserve genomic integrity. PLoS One 7(8):e43988
Article
Google Scholar
Hayano M, Kanoh Y, Matsumoto S, Masai H (2011) Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol Cell Biol 31(12):2380–2391
Article
Google Scholar
Zhao H., Russell P. 2004, DNA binding domain in the replication checkpoint protein Mrc1 of Schizosaccharomyces pombe. J Biol Chem. 17;279(51):53023-53027.
Tanaka S., Tak Y.S., Araki H. 2007, The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div. 5;2:16.
Katou Y., Kanoh Y., Bando M., Noguchi H., Tanaka H., Ashikari T., Sugimoto K., Shirahige K. 2003, S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature. 28;424(6952):1078-1083.
Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28(6):617–623
Article
Google Scholar
Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. 1990, High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 25;18(22):6485-6489.
Hagan IM, Hyams JS (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 89(Pt 3):343–357
Google Scholar
Burnette WN (1981) "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203
Article
Google Scholar
Fennessy D., Grallert A., Krapp A., Cokoja A., Bridge A.J., Petersen J., Patel A., Tallada V.A., Boke E., Hodgson B., Simanis V., Hagan I.M. 2014, Extending the Schizosaccharomyces pombe molecular genetic toolbox. PLoS One. 21;9(5):e97683.
Sabatinos SA, Green MD, Forsburg SL (2012) Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 32(24):4986–4997
Article
Google Scholar
Anderson HE, Wardle J, Korkut SV, Murton HE, López-Maury L, Bähler J, Whitehall SK (2009) The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 29(18):5158–5167
Article
Google Scholar
Calzada A., Hodgson B., Kanemaki M., Bueno A., Labib K. 2005, Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 15;19(16):1905-1919.
Lambert S., Froget B., Carr A.M. 2007, Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair (Amst). 1;6(7):1042-1061. Review.
Lambert S., Watson A., Sheedy D.M., Martin B., Carr A.M. 2005, Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell. 3;121(5):689-702.