Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8 system. Front Microbiol 5:1–20. https://doi.org/10.3389/fmicb.2014.00063
Article
Google Scholar
Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: a 5-year update. Prot Sci 28:1412–1422. https://doi.org/10.1002/pro.3668
Article
Google Scholar
Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145. https://doi.org/10.1038/nbt.4305
Article
Google Scholar
van der Hoek SA, Darbani B, Zugaj KE et al (2019) Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 7:1–14. https://doi.org/10.3389/fbioe.2019.00262
Article
Google Scholar
Bartolo-Aguilar Y, Chávez-Cabrera C, Cancino-Díaz JC, Marsch R (2021) Expression of a synthetic protein with a high proportion of essential amino acids by Pichia pastoris. Rev Mex Ing Quim 20:Bio2419. https://doi.org/10.24275/rmiq/Bio2419
Article
Google Scholar
Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V (2016) An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci 4:346–356. https://doi.org/10.1002/0471140864.ps0500s61
Article
Google Scholar
Tripathi NK, Shrivastava A (2019) Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol 7:420. https://doi.org/10.3389/fbioe.2019.00420
Article
Google Scholar
Welsch N, Homuth G, Schweder T (2015) Stepwise optimization of a low-temperature Bacillus subtilis expression system for “difficult to express” proteins. Appl Microbiol Biotechnol 99:6363–6376. https://doi.org/10.1007/s00253-015-6552-y
Article
Google Scholar
Chen X, Li C, Liu H (2021) Enhanced recombinant protein production under special environmental stress. Front Microbiol 12:1–11. https://doi.org/10.3389/fmicb.2021.630814
Article
Google Scholar
Mujacic M, Cooper KW, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: Application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238:325–332. https://doi.org/10.1016/S0378-1119(99)00328-5
Article
Google Scholar
Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259. https://doi.org/10.1042/BJ20060166
Article
Google Scholar
Dahlquist KD, Fitzpatrick BG, Camacho ET et al (2015) Parameter estimation for gene regulatory networks from microarray data: cold shock response in Saccharomyces cerevisiae. Bull Math Biol 77:1457–1492. https://doi.org/10.1007/s11538-015-0092-6
Article
MathSciNet
MATH
Google Scholar
Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180. https://doi.org/10.1016/S1369-5274(99)80031-9
Article
Google Scholar
Jones PG, Inouye M (1994) The cold-shock response — a hot topic. Mol Microbiol 11:811–818. https://doi.org/10.1111/j.1365-2958.1994.tb00359.x
Article
Google Scholar
Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021. https://doi.org/10.1074/jbc.M209258200
Article
Google Scholar
Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539. https://doi.org/10.1016/S0022-2836(03)00732-0
Article
Google Scholar
Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913. https://doi.org/10.1007/PL00012513
Article
Google Scholar
Phadtare S (2012) Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 17:850–874. https://doi.org/10.1111/gtc.12002
Article
Google Scholar
Fuller BJ (2003) Gene expression in response to low temperatures in mammalian cells: a review of current ideas. Cryo-Lett 24:95–102
Google Scholar
Inouye M, Phadtare S (2004) Cold Shock Response and Adaptation at Near-Freezing Temperature in Microorganisms. Sci STKE 2004:pe26. https://doi.org/10.1126/stke.2372004pe26
Article
Google Scholar
Charlebois DA, Hauser K, Marshall S, Balázsi G (2018) Multiscale effects of heating and cooling on genes and gene networks. Proc Natl Acad Sci U S A 115:E10797–E10806. https://doi.org/10.1073/pnas.1810858115
Article
Google Scholar
Kandror O, Bretschneider N, Kreydin E et al (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781. https://doi.org/10.1016/S1097-2765(04)00148-0
Article
Google Scholar
Higashitsuji H, Fujita T, Higashitsuji H, Fujita J (2020) Mammalian cold-inducible RNA-binding protein facilitates wound healing through activation of AMP-activated protein kinase. Biochem Biophys Res Commun 533:1191–1197. https://doi.org/10.1016/j.bbrc.2020.10.004
Article
Google Scholar
Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742. https://doi.org/10.1152/japplphysiol.01143.2001
Article
Google Scholar
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol 5:1–17. https://doi.org/10.3389/fmicb.2014.00172
Article
Google Scholar
Cartwright JF, Arnall CL, Patel YD et al (2020) A platform for context-specific genetic engineering of recombinant protein production by CHO cells. J Biotechnol 312:11–22. https://doi.org/10.1016/J.JBIOTEC.2020.02.012
Article
Google Scholar
Faravelli S, Campioni M, Palamini M et al (2021) Optimized recombinant production of secreted proteins using human embryonic kidney (HEK293) cells grown in suspension. Bio Protoc 11:e3998. https://doi.org/10.21769/BioProtoc.3998
Article
Google Scholar
Qiu X, Wong G, Audet J et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53. https://doi.org/10.1038/nature13777
Article
Google Scholar
Lozano Terol G, Gallego-Jara J, Sola Martínez RA et al (2021) Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front Microbiol 12:1–12. https://doi.org/10.3389/fmicb.2021.682001
Article
Google Scholar
Schillberg S, Raven N, Spiegel H et al (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci 10:720. https://doi.org/10.3389/fpls.2019.00720
Article
Google Scholar
Baeshen MN, Al-Hejin AM, Bora RS et al (2015) Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol 25:953–962. https://doi.org/10.4014/jmb.1412.12079
Article
Google Scholar
Pontrelli S, Chiu T-Y, Lan EI et al (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46. https://doi.org/10.1016/j.ymben.2018.04.008
Article
Google Scholar
Cai D, Rao Y, Zhan Y et al (2019) Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 126:1632–1642. https://doi.org/10.1111/jam.14192
Article
Google Scholar
Cui W, Han L, Suo F et al (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145. https://doi.org/10.1007/s11274-018-2531-7
Article
Google Scholar
Vieira Gomes A, Souza Carmo T, Silva Carvalho L et al (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6:38. https://doi.org/10.3390/microorganisms6020038
Article
Google Scholar
Baghban R, Farajnia S, Rajabibazl M et al (2019) Yeast expression systems: overview and recent advances. Mol Biotechnol 61:365–384
Article
Google Scholar
Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16. https://doi.org/10.1111/1567-1364.12195
Article
Google Scholar
Piirainen MA, Salminen H, Frey AD (2022) Production of galactosylated complex-type N-glycans in glycoengineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 106:301–315. https://doi.org/10.1007/s00253-021-11727-8
Article
Google Scholar
Gasset A, Garcia-Ortega X, Garrigós-Martínez J et al (2022) Innovative bioprocess strategies combining physiological control and strain engineering of Pichia pastoris to improve recombinant protein production. Front Bioeng Biotechnol 10:818434. https://doi.org/10.3389/fbioe.2022.818434
Article
Google Scholar
Papala A, Sylvester M, Dyballa-Rukes N et al (2017) Isolation and characterization of human CapG expressed and post-translationally modified in Pichia pastoris. Protein Expr Purif 134:25–37. https://doi.org/10.1016/j.pep.2017.03.017
Article
Google Scholar
Brain-Isasi S, Álvarez-Lueje A, Higgins TJV (2017) Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae. Microb Cell Fact 16:110. https://doi.org/10.1186/s12934-017-0719-4
Article
Google Scholar
Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136. https://doi.org/10.1016/j.fgb.2015.12.001
Article
Google Scholar
McKenzie EA, Abbott WM (2018) Expression of recombinant proteins in insect and mammalian cells. Methods 147:40–49. https://doi.org/10.1016/j.ymeth.2018.05.013
Article
Google Scholar
Roobol A, Roobol J, Smith ME et al (2020) Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis. Metab Eng 59:98–105. https://doi.org/10.1016/j.ymben.2020.02.001
Article
Google Scholar
Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122. https://doi.org/10.3109/07388551.2015.1084266
Article
Google Scholar
Bervoets I, Charlier D (2019) Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 43:304–339. https://doi.org/10.1093/femsre/fuz001
Article
Google Scholar
Goldstein MA, Doi RH (1995) Prokaryotic promoters in biotechnology. Biotechnol Annu Rev 1:105–128. https://doi.org/10.1016/S1387-2656(08)70049-8
Article
Google Scholar
Le ATT, Schumann W (2007) A novel cold-inducible expression system for Bacillus subtilis. Protein Expr Purif 53:264–269. https://doi.org/10.1016/j.pep.2006.12.023
Article
Google Scholar
Santillán M, Mackey MC (2004) Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac Operon. Biophys J 86:1282–1292. https://doi.org/10.1016/S0006-3495(04)74202-2
Article
Google Scholar
Pan S, Malcolm BA (2000) Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 29:1234–1238. https://doi.org/10.2144/00296st03
Article
Google Scholar
Schumann W, Ferreira LCS (2004) Production of recombinant proteins in Escherichia coli. Genet Mol Biol 27:442–453. https://doi.org/10.1590/S1415-47572004000300022
Article
Google Scholar
Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. https://doi.org/10.1016/S0958-1669(99)00003-8
Article
Google Scholar
Du F, Liu Y-Q, Xu Y-S et al (2021) Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microb Cell Fact 20:189. https://doi.org/10.1186/s12934-021-01680-6
Article
Google Scholar
Hothersall J, Godfrey RE, Fanitsios C et al (2021) The PAR promoter expression system: Modified lac promoters for controlled recombinant protein production in Escherichia coli. N Biotechnol 64:1–8. https://doi.org/10.1016/j.nbt.2021.05.001
Article
Google Scholar
Hu X, Fan G, Liao H et al (2020) Optimized soluble expression of a novel endoglucanase from Burkholderia pyrrocinia in Escherichia coli. 3 Biotech 10:1–20. https://doi.org/10.1007/s13205-020-02327-w
Article
Google Scholar
Ramkumar S, Rabindranath Pai V, Thangadurai C, Priya Murugan V (2017) Chemical complexity of protein determines optimal E. coli expression host; a comparative study using Erythropoietin, Streptokinase and Tumor Necrosis Factor Receptor. J Genet Eng Biotechnol 15:179–185. https://doi.org/10.1016/j.jgeb.2016.12.006
Article
Google Scholar
Koscielniak D, Wons E, Wilkowska K, Sektas M (2018) Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Microb Cell Fact 17:184. https://doi.org/10.1186/s12934-018-1034-4
Article
Google Scholar
Jacopini S, Mariani M, de Caraffa VBB et al (2016) Olive recombinant hydroperoxide lyase, an efficient biocatalyst for synthesis of green leaf volatiles. Appl Biochem Biotechnol 179:671–683. https://doi.org/10.1007/s12010-016-2023-x
Article
Google Scholar
Joshi R, Singh P, Sharma NK et al (2021) Site-directed mutagenesis in the P-domain of calreticulin transacylase identifies Lys-207 as the active site residue. 3 Biotech 11:113. https://doi.org/10.1007/s13205-021-02659-1
Article
Google Scholar
Borovsky D, Deckers K, Vanhove AC et al (2021) Cloning and characterization of Aedes aegypti Trypsin Modulating Oostatic Factor (TMOF) Gut Receptor. Biomolecules 11:934. https://doi.org/10.3390/biom11070934
Article
Google Scholar
Ang RP, Teoh LS, Chan MK et al (2016) Comparing the expression of human DNA topoisomerase I in KM71H and X33 strains of Pichia pastoris. Electron J Biotechnol 21:9–17. https://doi.org/10.1016/j.ejbt.2016.01.007
Article
Google Scholar
Qiu Z, Guo Y, Bao X et al (2016) Expression of Aspergillus niger glucose oxidase in yeast Pichia pastoris SMD1168. Biotechnol Biotechnol Equip 30:998–1005. https://doi.org/10.1080/13102818.2016.1193442
Article
Google Scholar
Xia Y, Wu Z, He R et al (2021) Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis. Bioresour Bioprocess 8:1–11. https://doi.org/10.1186/s40643-021-00395-1
Article
Google Scholar
REA P, Gonçalves VS, dos Santos Junior AG et al (2021) Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae. Biotechnol Lett 43:1649–1657. https://doi.org/10.1007/s10529-021-03142-w
Ma J, Yan H, Qin C et al (2022) Accumulation of Astaxanthin by Co-fermentation of Spirulina platensis and Recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 194:988–999. https://doi.org/10.1007/s12010-021-03666-x
Article
Google Scholar
Ecker JW, Kirchenbaum GA, Pierce SR et al (2020) High-yield expression and purification of recombinant influenza virus proteins from stably-transfected mammalian cell lines. Vaccines (Basel) 8:1–20. https://doi.org/10.3390/vaccines8030462
Article
Google Scholar
de Wit RH, Mujic-Delic A, van Senten JR et al (2016) Human cytomegalovirus encoded chemokine receptor US28 activates the HIF-1α/PKM2 axis in glioblastoma cells. Oncotarget 7:67966–67985. https://doi.org/10.18632/ONCOTARGET.11817
Article
Google Scholar
Szymanski P, Kretschmer PJ, Bauzon M et al (2007) Development and validation of a robust and versatile one-plasmid regulated gene expression system. Mol Ther 15:1340–1347. https://doi.org/10.1038/sj.mt.6300171
Article
Google Scholar
Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634. https://doi.org/10.1007/s00018-012-0990-9
Article
Google Scholar
Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9
Article
Google Scholar
Davuluri RV, Suzuki Y, Sugano S et al (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends genet 24:167–177. https://doi.org/10.1016/j.tig.2008.01.008
Article
Google Scholar
Le SB, Onsager I, Lorentzen JA, Lale R (2020) Dual UTR-A novel 5′ untranslated region design for synthetic biology applications. Synth Biol 5:ysaa006. https://doi.org/10.1093/synbio/ysaa006
Article
Google Scholar
Leppek K, Das R, Barna M (2018) Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19:158–174. https://doi.org/10.1038/nrm.2017.103
Article
Google Scholar
Zrimec J, Buric F, Kokina M et al (2021) Learning the regulatory code of gene expression. Front Mol Biosci 8:1–28. https://doi.org/10.3389/fmolb.2021.673363
Article
Google Scholar
Araujo PR, Yoon K, Ko D et al (2012) Before It Gets Started: Regulating Translation at the 5′ UTR. Comp Funct Genomics 2012:1–8. https://doi.org/10.1155/2012/475731
Article
Google Scholar
Liu B, Kearns DB, Bechhofer DH (2016) Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3′ ends. Nucleic Acids Res 44:3364–3372. https://doi.org/10.1093/nar/gkw069
Article
Google Scholar
Ren GX, Guo XP, Sun YC (2017) Regulatory 3’ untranslated regions of bacterial mRNAs. Front Microbiol 8:1–6. https://doi.org/10.3389/fmicb.2017.01276
Article
Google Scholar
Miyakoshi M, Chao Y, Vogel J (2015) Regulatory small RNAs from the 3’ regions of bacterial mRNAs. Curr Opin Microbiol 24:132–139. https://doi.org/10.1016/j.mib.2015.01.013
Article
Google Scholar
Adjirackor NA, Harvey KE, Harvey SC (2020) Eukaryotic response to hypothermia in relation to integrated stress responses. Cell Stress Chaperones 25:833–846. https://doi.org/10.1007/s12192-020-01135-8
Article
Google Scholar
Al-Fageeh MB, Smales CM (2013) Alternative promoters regulate cold inducible RNA-binding (CIRP) gene expression and enhance transgene expression in mammalian cells. Mol Biotechnol 54:238–249. https://doi.org/10.1007/s12033-013-9649-5
Article
Google Scholar
Heinemann U, Roske Y (2021) Cold-shock domains—abundance, structure, properties, and nucleic-acid binding. Cancers (Basel) 13:190. https://doi.org/10.3390/cancers13020190
Article
Google Scholar
Roobol A, Carden MJ, Newsam RJ, Smales CM (2009) Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS Journal 276:286–302. https://doi.org/10.1111/j.1742-4658.2008.06781.x
Article
Google Scholar
Roobol A, Roobol J, Carden MJ et al (2011) ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochem J 435:499–508. https://doi.org/10.1042/BJ20101303
Article
Google Scholar
Singh A, Krishnan KP, Prabaharan D, Sinha RK (2017) Lipid membrane modulation and pigmentation: a cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol 57:770–780. https://doi.org/10.1002/jobm.201700182
Article
Google Scholar
Czapski TR, Trun N (2014) Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene 547:91–97. https://doi.org/10.1016/j.gene.2014.06.033
Article
Google Scholar
Graumann P, Wendrich TM, Weber MHW et al (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756. https://doi.org/10.1046/j.1365-2958.1997.5121878.x
Article
Google Scholar
Keto-Timonen R, Hietala N, Palonen E et al (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of Enteropathogenic Yersinia. Front Microbiol 7:1–7. https://doi.org/10.3389/fmicb.2016.01151
Article
Google Scholar
Mega R, Manzoku M, Shinkai A et al (2010) Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochem Biophys Res Commun 399:336–340. https://doi.org/10.1016/j.bbrc.2010.07.065
Article
Google Scholar
Choi J, Salvail H, Groisman EA (2021) RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 49:11614–11628. https://doi.org/10.1093/nar/gkab992
Article
Google Scholar
Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287. https://doi.org/10.1073/pnas.87.1.283
Article
Google Scholar
Yamanaka K, Inouye M (2001) Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37 °C. Genes to Cells 6:279–290. https://doi.org/10.1046/j.1365-2443.2001.00424.x
Article
Google Scholar
Kim J, Park J, Jeong S et al (2005) Cold shock response of Leuconostoc mesenteroides SY1 isolated from Kimchi. J Microbiol Biotechnol 15:831–837
Google Scholar
Hunger K, Beckering CL, Wiegeshoff F et al (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188:240–248. https://doi.org/10.1128/JB.188.1.240-248.2006
Article
Google Scholar
Brandi A, Pon CL, Gualerzi CO (1994) Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie 76:1090–1098. https://doi.org/10.1016/0300-9084(94)90035-3
Article
Google Scholar
Jones P, Krah R, Tafuri S, Wolffe A (1992) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol 174:5798–5802. https://doi.org/10.1128/jb.174.18.5798-5802.1992
Article
Google Scholar
Giuliodori AM, di Pietro F, Marzi S et al (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37:21–33. https://doi.org/10.1016/j.molcel.2009.11.033
Article
Google Scholar
Ivancic T, Jamnik P, Stopar D (2013) Cold shock CspA and CspB protein production during periodic temperature cycling in Escherichia coli. BMC Res Notes 6:248. https://doi.org/10.1186/1756-0500-6-248
Article
Google Scholar
Palonen E, Lindström M, Korkeala H (2010) Adaptation of enteropathogenic Yersinia to low growth temperature. Crit Rev Microbiol 36:54–67. https://doi.org/10.3109/10408410903382581
Article
Google Scholar
Etchegaray JP, Jones PG, Inouye M (1996) Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes to Cells 1:171–178. https://doi.org/10.1046/j.1365-2443.1996.d01-231.x
Article
Google Scholar
Uppal S, Rao Akkipeddi VSN, Jawali N (2008) Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5′-untranslated region. FEMS Microbiol Lett 279:83–91. https://doi.org/10.1111/j.1574-6968.2007.01009.x
Article
Google Scholar
Nakashima K, Kanamaru K, Mizuno T, Horikoshi K (1996) A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178:2994–2997. https://doi.org/10.1128/jb.178.10.2994-2997.1996
Article
Google Scholar
Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609. https://doi.org/10.1128/jb.181.5.1603-1609.1999
Article
Google Scholar
Ojha S, Jain C (2020) Dual-level autoregulation of the E. coli DeaD RNA helicase via mRNA stability and Rho-dependent transcription termination. RNA 26:1160–1169. https://doi.org/10.1261/rna.074112.119
Article
Google Scholar
la Teana A, Brandi A, Falconi M et al (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 88:10907–10911. https://doi.org/10.1073/pnas.88.23.10907
Article
Google Scholar
Dillingham MS, Kowalczykowski SC (2008) RecBCD Enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642–671. https://doi.org/10.1128/mmbr.00020-08
Article
Google Scholar
Singh AK, Pindi PK, Dube S et al (2009) Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl Environ Microbiol 75:4419–4426. https://doi.org/10.1128/AEM.01523-08
Article
Google Scholar
Janiyani KL, Ray MK (2002) Cloning, sequencing, and expression of the cold-inducible hutU gene from the antarctic psychrotrophic bacterium Pseudomonas syringae. Appl Environ Microbiol 68:1–10. https://doi.org/10.1128/AEM.68.1.1-10.2002
Article
Google Scholar
Pavankumar TL, Sinha AK, Ray MK (2010) All three subunits of RecBCD enzyme are essential for DNA repair and low-temperature growth in the Antarctic Pseudomonas syringae Lz4W. PLoS One 5:e9412. https://doi.org/10.1371/journal.pone.0009412
Article
Google Scholar
Sundareswaran VR, Singh AK, Dube S, Shivaji S (2010) Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol 192:663–672. https://doi.org/10.1007/s00203-010-0591-7
Article
Google Scholar
Jovcic B, Bertani I, Venturi V et al (2008) 5′ untranslated region of the Pseudomonas putida WCS358 stationary phase sigma factor rpoS mRNA is involved in RpoS translational regulation. J Microbiol 46:56–61. https://doi.org/10.1007/s12275-007-0127-2
Article
Google Scholar
Nagaoka E, Hidese R, Imanaka T, Fujiwara S (2013) Importance and determinants of induction of cold-induced DEAD RNA Helicase in the Hyperthermophilic Archaeon Thermococcus kodakarensis. J Bacteriol 195:3442–3450. https://doi.org/10.1128/JB.00332-13
Article
Google Scholar
Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J Mol Biol 297:553–567. https://doi.org/10.1006/jmbi.2000.3585
Article
Google Scholar
Willimsky G, Bang H, Fischer G, Marahiel MA (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174:6326–6335. https://doi.org/10.1128/jb.174.20.6326-6335.1992
Article
Google Scholar
Mazzon RR, Lang EAS, Silva CAPT, Marques MV (2012) Cold shock genes CspA and CspB from Caulobacter crescentus are post transcriptionally regulated and important for cold adaptation. J Bacteriol 194:6507–6517. https://doi.org/10.1128/JB.01422-12
Article
Google Scholar
Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3:160106. https://doi.org/10.1098/rsos.160106
Article
Google Scholar
Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A et al (2021) Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. J Ind Microbiol Biotechnol 48:kuab048. https://doi.org/10.1093/jimb/kuab048
Article
Google Scholar
Nizovoy P, Bellora N, Haridas S et al (2021) Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 21:1–14. https://doi.org/10.1093/femsyr/foaa056
Article
Google Scholar
Kondo K, Kowalski LRZ, Inouye M (1992) Cold shock induction of yeast NSR1 protein and its role in pre-rRNA processing. J Biol Chem 267:16259–16265. https://doi.org/10.1016/s0021-9258(18)41994-1
Article
Google Scholar
Somer L, Shmulman O, Dror T et al (2002) The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae. Cell Stress Chaperones 7:47 10.1379/1466-1268(2002)007<0047:TECCIA>2.0.CO;2
Article
Google Scholar
Bartolo-Aguilar Y, Dendooven L, Chávez-Cabrera C et al (2017) Autolysis of Pichia pastoris induced by cold. AMB Express 7:95. https://doi.org/10.1186/s13568-017-0397-y
Article
Google Scholar
Kondo K, Inouye M (1991) TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266:17537–17544. https://doi.org/10.1016/s0021-9258(19)47405-x
Article
Google Scholar
LRZ K, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353. https://doi.org/10.1111/j.1365-2958.1995.tb02248.x
Chabane S, Képès F (1998) Expression of the yeast BFR2 gene is regulated at the transcriptional level and through degradation of its product. Mol Gen Genet 258:215–221. https://doi.org/10.1007/PL00008624
Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713. https://doi.org/10.1006/bbrc.2002.6507
Article
Google Scholar
Rodriguez-Vargas S, Estruch F, Randez-Gil F (2002) Gene expression analysis of cold and freeze stress in Baker’s yeast. Appl Environ Microbiol 68:3024–3030. https://doi.org/10.1128/AEM.68.6.3024-3030.2002
Article
Google Scholar
Panadero J, Pallotti C, Rodríguez-Vargas S et al (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645. https://doi.org/10.1074/jbc.M512736200
Article
Google Scholar
Murata Y, Homma T, Kitagawa E et al (2006) Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles 10:117–128. https://doi.org/10.1007/s00792-005-0480-1
Article
Google Scholar
Homma T, Iwahashi H, Komatsu Y (2003) Yeast gene expression during growth at low temperature. Cryobiology 46:230–237. https://doi.org/10.1016/S0011-2240(03)00028-2
Article
Google Scholar
Danno S, Itoh K, Matsuda T, Fujita J (2000) Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am J Pathol 156:1685–1692. https://doi.org/10.1016/S0002-9440(10)65039-0
Article
Google Scholar
Holland DB, Roberts SG, Wood EJ, Cunliffe WJ (1993) Cold shock induces the synthesis of stress proteins in human keratinocytes. J Invest Dermatol 101:196–199. https://doi.org/10.1111/1523-1747.ep12363791
Article
Google Scholar
Ohnishi T, Wang X, Ohnishi K et al (1996) p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. J Biol Chem 271:14510–14513. https://doi.org/10.1074/jbc.271.24.14510
Article
Google Scholar
Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 93:829–835. https://doi.org/10.1002/bit.20789
Article
Google Scholar
Torres M, Akhtar S, McKenzie EA, Dickson AJ (2021) Temperature down-shift modifies expression of UPR-/ERAD-related genes and enhances production of a chimeric fusion protein in CHO cells. Biotechnol J 16:1–11. https://doi.org/10.1002/biot.202000081
Article
Google Scholar
Masterton RJ, Roobol A, Al-Fageeh MB et al (2010) Post-translational events of a model reporter protein proceed with higher fidelity and accuracy upon mild hypothermic culturing of Chinese hamster ovary cells. Biotechnol Bioeng 105:215–220. https://doi.org/10.1002/bit.22533
Article
Google Scholar
Torres M, Zúñiga R, Gutierrez M et al (2018) Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS One 13:e0194510. https://doi.org/10.1371/journal.pone.0194510
Article
Google Scholar
Emmerling VV, Fischer S, Kleemann M et al (2016) miR-483 is a self-regulating microRNA and can activate its own expression via USF1 in HeLa cells. Int J Biochem Cell Biol 80:81–86. https://doi.org/10.1016/j.biocel.2016.09.022
Article
Google Scholar
McHugh KP, Xu J, Aron KL et al (2020) Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog 36:e2959. https://doi.org/10.1002/btpr.2959
Article
Google Scholar
Torres M, Dickson AJ (2022) Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnol Bioeng 119:550–565. https://doi.org/10.1002/bit.28000
Article
Google Scholar
Wang K, Zhang T, Chen J et al (2018) The effect of culture temperature on the aggregation of recombinant TNFR-Fc is regulated by the PERK-eIF2a pathway in CHO cells. Protein Pept Lett 25:570–579. https://doi.org/10.2174/0929866525666180530121317
Article
Google Scholar
Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1:243–255
Google Scholar
Danladi J, Sabir H (2021) Perinatal infection: a major contributor to efficacy of cooling in newborns following birth asphyxia. Int J Mol Sci 22:1–17. https://doi.org/10.3390/ijms22020707
Article
Google Scholar
Baik JY, Lee MS, An SR et al (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93:361–371. https://doi.org/10.1002/bit.20717
Article
Google Scholar
Eskla KL, Porosk R, Reimets R et al (2018) Hypothermia augments stress response in mammalian cells. Free Radic Biol Med 121:157–168. https://doi.org/10.1016/J.FREERADBIOMED.2018.04.571
Article
Google Scholar
Jang MH, Min H, Lee JS (2021) Enhancement of transgene expression by mild hypothermia is promoter dependent in HEK293 cells. Life 11:901. https://doi.org/10.3390/life11090901
Article
Google Scholar
Nguyen LN, Novak N, Baumann M et al (2020) Bioinformatic identification of chinese hamster ovary (CHO) cold-shock genes and biological evidence of their cold-inducible promoters. Biotechnol J 15:1–9. https://doi.org/10.1002/biot.201900359
Article
Google Scholar
Underhill MF, Smales CM (2007) The cold-shock response in mammalian cells: investigating the HeLa cell cold-shock proteome. Cytotechnology 53:47–53. https://doi.org/10.1007/s10616-007-9048-5
Article
Google Scholar
Zhou S, Du G, Kang Z et al (2017) The application of powerful promoters to enhance gene expression in industrial microorganisms. World J Microbiol Biotechnol 33:23. https://doi.org/10.1007/s11274-016-2184-3
Article
Google Scholar
Falak S, Sajed M, Rashid N (2022) Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl) 77:893–905. https://doi.org/10.1007/s11756-021-00994-5
Article
Google Scholar
Lin M-I, Nagata T, Katahira M (2018) High yield production of fungal manganese peroxidases by E. coli through soluble expression, and examination of the activities. Protein Expr Purif 145:45–52. https://doi.org/10.1016/j.pep.2017.12.012
Article
Google Scholar
Bjerga GEK, Lale R, Williamson AK (2016) Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes. Bioengineered 7:33–38. https://doi.org/10.1080/21655979.2015.1128589
Article
Google Scholar
Tanabe H, Goldstein J, Yang M, Inouye M (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol 174:3867–3873. https://doi.org/10.1128/jb.174.12.3867-3873.1992
Article
Google Scholar
Vasina JA, Baneyx F (1996) Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol 62:1444–1447. https://doi.org/10.1128/aem.62.4.1444-1447.1996
Article
Google Scholar
Vasina JA, Baneyx F (1997) Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 9:211–218. https://doi.org/10.1006/prep.1996.0678
Article
Google Scholar
Vasina JA, Peterson MS, Baneyx F (1998) Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol Prog 14:714–721. https://doi.org/10.1021/bp980061p
Article
Google Scholar
Qing G, Ma LC, Khorchid A et al (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882. https://doi.org/10.1038/nbt984
Article
Google Scholar
Liu T, Zhao H, Jian S et al (2021) Functional expression, purification and identification of interaction partners of PACRG. Molecules 26:2308. https://doi.org/10.3390/molecules26082308
Article
Google Scholar
Inouye S, Sakaki Y, Goto T, Tsuji FI (1986) Expression of apoaequorin complementary DNA in Escherichia coli. Biochemistry 25:8425–8429. https://doi.org/10.1021/bi00374a015
Article
Google Scholar
Inouye S, Sahara Y (2008) Soluble protein expression in E. coli cells using IgG-binding domain of protein A as a solubilizing partner in the cold induced system. Biochem Biophys Res Commun 376:448–453. https://doi.org/10.1016/j.bbrc.2008.08.149
Article
Google Scholar
Fu Z, Fan G, Zhu Y et al (2020) Soluble expression of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 in Escherichia coli and optimization of production conditions. Biotechnol Biotechnol Equip 34:732–746. https://doi.org/10.1080/13102818.2020.1803129
Article
Google Scholar
Zhang Y, Qi K, Jing Y et al (2017) LsrB-based and temperature-dependent identification of bacterial AI-2 receptor. AMB Express 7:188. https://doi.org/10.1186/s13568-017-0486-y
Article
Google Scholar
Hua T, Zhang D, Tang B et al (2020) The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 248:108795. https://doi.org/10.1016/j.vetmic.2020.108795
Article
Google Scholar
Hunt EA, Moutsiopoulou A, Broyles D et al (2017) Expression of a soluble truncated Vargula luciferase in Escherichia coli. Protein Expr Purif 132:68–74. https://doi.org/10.1016/j.pep.2017.01.007
Article
Google Scholar
Zare F, Saboor-Yaraghi AA, Hadinedoushan H et al (2020) Production and characterization of recombinant human leukemia inhibitory factor and evaluation of anti-fertility effects of rabbit anti-rhLIF in Balb/c mice. Protein Expr Purif 174:105684. https://doi.org/10.1016/j.pep.2020.105684
Article
Google Scholar
Bjerga GEK, Williamson AK (2015) Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnol 15:78. https://doi.org/10.1186/s12896-015-0185-1
Article
Google Scholar
Duilio A, Madonna S, Tutino ML et al (2004) Promoters from a cold-adapted bacterium: Definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132. https://doi.org/10.1007/s00792-003-0371-2
Article
Google Scholar
Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol 267:225–237. https://doi.org/10.1385/1-59259-774-2:225
Article
Google Scholar
Colarusso A, Lauro C, Calvanese M et al (2020) Improvement of Pseudoalteromonas haloplanktis TAC125 as a cell factory: IPTG-inducible plasmid construction and strain engineering. Microorganisms 8:1466. https://doi.org/10.3390/microorganisms8101466
Article
Google Scholar
Chávez-Cabrera C, Marsch R, Bartolo-Aguilar Y et al (2015) Molecular cloning and characterization of the ATP citrate lyase from carotenogenic yeast Phaffia rhodozyma. FEMS Yeast Res 15:fov054. https://doi.org/10.1093/femsyr/fov054
Article
Google Scholar
Dragosits M, Stadlmann J, Albiol J et al (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392. https://doi.org/10.1021/pr8007623
Article
Google Scholar
Gao MJ, Zhan XB, Gao P et al (2015) Improving performance and operational stability of porcine interferon-α production by Pichia pastoris with combinational induction strategy of low temperature and methanol/sorbitol co-feeding. Appl Biochem Biotechnol 176:493–504. https://doi.org/10.1007/s12010-015-1590-6
Article
Google Scholar
He LY, Bin WG, Cao FL et al (2011) Cloning of laccase gene from Coriolus Versicolor and optimization of culture conditions for lcc1 expression in Pichia Pastoris. Adv Mat Res 236–238:1039–1044. https://doi.org/10.4028/www.scientific.net/AMR.236-238.1039
Article
Google Scholar
Toikkanen JH, Niku-Paavola ML, Bailey M et al (2007) Expression of xyloglucan endotransglycosylases of Gerbera hybrida and Betula pendula in Pichia pastoris. J Biotechnol 130:161–170. https://doi.org/10.1016/j.jbiotec.2007.03.004
Article
Google Scholar
Wu JM, Wang SY, Fu WC (2012) Lower temperature cultures enlarge the effects of vitreoscilla hemoglobin expression on recombinant Pichia pastoris. Int J Mol Sci 13:13212–13226. https://doi.org/10.3390/ijms131013212
Article
Google Scholar
Yu M, Wen S, Tan T (2010) Enhancing production of Yarrowia lipolytica lipase Lip2 in Pichia pastoris. Eng Life Sci 10:458–464. https://doi.org/10.1002/elsc.200900102
Article
Google Scholar
Kuo T-C, Shaw J-F, Lee G-C (2015) Improvement in the secretory expression of recombinant Candida rugosa lipase in Pichia pastoris. Process Biochem 50:2137–2143. https://doi.org/10.1016/j.procbio.2015.09.013
Article
Google Scholar
Li Z, Xiong F, Lin Q et al (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:438–445. https://doi.org/10.1006/prep.2001.1395
Article
Google Scholar
Chávez-Cabrera C, Flores-Bustamante ZR, Marsch R et al (2010) ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol 85:1953–1960. https://doi.org/10.1007/s00253-009-2271-6
Article
Google Scholar
Cassland P, Jönsson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400. https://doi.org/10.1007/s002530051537
Article
Google Scholar
Cordova LT, Alper HS (2018) Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Appl Microbiol Biotechnol 102:8809–8816. https://doi.org/10.1007/s00253-018-9349-y
Article
Google Scholar
Han X, Wang S, Zheng L, Liu W (2019) Identification and characterization of a delta-12 fatty acid desaturase gene from marine microalgae Isochrysis galbana. Acta Oceanol Sin 38:107–113. https://doi.org/10.1007/s13131-019-1354-1
Article
Google Scholar
Holic R, Yazawa H, Kumagai H, Uemura H (2012) Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 95:179–187. https://doi.org/10.1007/s00253-012-3959-6
Article
Google Scholar
Raimondi S, Zanni E, Amaretti A et al (2013) Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Fact 12:34. https://doi.org/10.1186/1475-2859-12-34
Article
Google Scholar
Thaisuchat H, Baumann M, Pontiller J et al (2011) Identification of a novel temperature sensitive promoter in cho cells. BMC Biotechnol 11:51. https://doi.org/10.1186/1472-6750-11-51
Article
Google Scholar
Zhu X, Bührer C, Wellmann S (2016) Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 73:3839–3859. https://doi.org/10.1007/s00018-016-2253-7
Article
Google Scholar
Johari YB, Brown AJ, Alves CS et al (2019) CHO genome mining for synthetic promoter design. J Biotechnol 294:1–13. https://doi.org/10.1016/j.jbiotec.2019.01.015
Article
Google Scholar
Kang SY, Kim YG, Kang S et al (2016) A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells. Biotechnol J 11:633–641. https://doi.org/10.1002/biot.201500464
Article
Google Scholar
Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. https://doi.org/10.1016/j.biotechadv.2009.01.008
Article
Google Scholar
Caballero CJ, Menendez-Gil P, Catalan-Moreno A et al (2018) The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus. Nucleic Acids Res 46:1345–1361. https://doi.org/10.1093/nar/gkx1284
Article
Google Scholar
Singh AK, Sad K, Singh SK, Shivaji S (2014) Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology 160:1291–1297. https://doi.org/10.1099/mic.0.077594-0
Article
Google Scholar