Seitz R (2016) Human immunodeficiency virus (HIV). Transfus Med Hemother 43:203–222. https://doi.org/10.1159/000445852
Article
Google Scholar
Ognenovska K, Klemm V, Ledger S, Turville S, Symonds G, Kelleher AD, Ahlenstiel CL (2019) Mechanisms for controlling HIV-1 infection: a gene therapy approach. In: Vivo Ex Vivo Gene Ther Inherit Non-Inherited Disord. https://doi.org/10.5772/intechopen.79669
Chapter
Google Scholar
Cornu TI, Mussolino C, Müller MC, Wehr C, Kern WV, Cathomen T (2021) HIV gene therapy: an update. Hum Gene Ther 32:52–65. https://doi.org/10.1089/hum.2020.159
Article
Google Scholar
Bobbin ML, Burnett JC, Rossi JJ (2015) RNA interference approaches for treatment of HIV-1 infection. Genome Med 7. https://doi.org/10.1186/s13073-015-0174-y
Xiao T, Cai Y, Chen B (2021) Hiv-1 entry and membrane fusion inhibitors. Viruses 13:1–19. https://doi.org/10.3390/v13050735
Article
Google Scholar
Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O’Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science (80- ) 273:1856–1862. https://doi.org/10.1126/science.273.5283.1856
Article
Google Scholar
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM (2014) Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 12:750–764. https://doi.org/10.1038/nrmicro3352
Article
Google Scholar
Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49:659–668. https://doi.org/10.1016/0092-8674(87)90542-3
Article
Google Scholar
Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature 364:593–599. https://doi.org/10.1038/364593a0
Article
Google Scholar
Yoder KE, Rabe AJ, Fishel R, Larue RC (2021) Strategies for targeting retroviral integration for safer gene therapy: advances and challenges. Front Mol Biosci 8:1–17. https://doi.org/10.3389/fmolb.2021.662331
Article
Google Scholar
Zamore PD (2006) RNA interference: big applause for silencing in Stockholm. Cell 127:1083–1086. https://doi.org/10.1016/j.cell.2006.12.001
Article
Google Scholar
Scarborough RJ, Gatignol A (2018) RNA interference therapies for an HIV-1 functional cure. Viruses 10:1–19. https://doi.org/10.3390/v10010008
Article
Google Scholar
Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20:483–512. https://doi.org/10.1038/mt.2011.263
Article
Google Scholar
Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759. https://doi.org/10.1016/j.addr.2009.04.004
Article
Google Scholar
Nguyen TD, Trinh TA, Bao S, Nguyen TA (2022) Secondary structure RNA elements control the cleavage activity of DICER. Nat Commun 13:1–16. https://doi.org/10.1038/s41467-022-29822-3
Article
Google Scholar
Svoboda P (2020) Key mechanistic principles and considerations concerning RNA interference. Front Plant Sci 11:1–13. https://doi.org/10.3389/fpls.2020.01237
Article
Google Scholar
Yoshida T, Asano Y, Ui-Tei K (2021) Modulation of microrna processing by dicer via its associated dsrna binding proteins. Non-coding RNA 7. https://doi.org/10.3390/ncrna7030057
Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, Joo C (2016) TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms13694
Article
Google Scholar
Bofill-De Ros X, Gu S (2016) Guidelines for the optimal design of miRNA-based shRNAs. Methods 103:157–166. https://doi.org/10.1016/j.ymeth.2016.04.003
Article
Google Scholar
Applegate TL, Birkett DJ, Mcintyre GJ, Jaramillo AB, Symonds G, Murray JM (2010) In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology 7:1–14. https://doi.org/10.1186/1742-4690-7-83
Article
Google Scholar
Mcintyre GJ, Groneman JL, Yu YH, Tran A, Applegate TL (2011) Multiple shRNA combinations for near-complete coverage of all HIV-1 strains. AIDS Res Ther 8:1–15. https://doi.org/10.1186/1742-6405-8-1
Article
Google Scholar
Choi JG, Bharaj P, Abraham S, Ma H, Yi G, Ye C, Dang Y, Manjunath N, Wu H, Shankar P (2015) Multiplexing seven miRNA-Based shRNAs to suppress HIV replication. Mol Ther 23:310–320. https://doi.org/10.1038/mt.2014.205
Article
Google Scholar
Tsai HE, Liu LF, Dusting GJ, Weng WT, Chen SC, Kung ML, Tee R, Liu GS, Tai MH (2012) Pro-opiomelanocortin gene delivery suppresses the growth of established Lewis lung carcinoma through a melanocortin-1 receptor-independent pathway. J Gene Med 14:44–53. https://doi.org/10.1002/jgm
Article
Google Scholar
Tsao LC, Guo H, Jeffrey J, Hoxie JA, Su L (2016) CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo. Retrovirology 13:1–13. https://doi.org/10.1186/s12977-016-0255-z
Article
Google Scholar
Pauza CD, Huang K, Bordon J (2021) Advances in cell and gene therapy for HIV disease: it is good to be specific. Curr Opin HIV AIDS 16:83–87. https://doi.org/10.1097/COH.0000000000000666
Article
Google Scholar
Swamy MN, Wu H, Shankar P (2016) Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 103:174–186. https://doi.org/10.1016/j.addr.2016.03.005
Article
Google Scholar
Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci U S A 97:7681–7686. https://doi.org/10.1073/pnas.97.14.7681
Article
MATH
Google Scholar
Morris KV, Chung CH, Witke W, Looney DJ (2005) Inhibition of HIV-1 replication by siRNA targeting conserved regions of gag/pol. RNA Biol 2:17–20. https://doi.org/10.4161/rna.2.1.1198
Article
Google Scholar
Shimizu S, Ringpis GE, Marsden MD, Cortado RV, Wilhalme HM, Elashoff D, Zack JA, Chen ISY, Sung An D (2015) RNAi-mediated CCR5 knockdown provides HIV-1 resistance to memory T cells in humanized BLT mice. Mol Ther - Nucleic Acids 4:1–10. https://doi.org/10.1038/mtna.2015.3
Article
Google Scholar
Kotowska-Zimmer A, Pewinska M, Olejniczak M (2021) Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA 12:1–33. https://doi.org/10.1002/wrna.1640
Article
Google Scholar
Liu YP, Haasnoot J, ter Brake O, Berkhout B, Konstantinova P (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824. https://doi.org/10.1093/nar/gkn109
Article
Google Scholar
Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, Kay MA (2012) The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151:900–911. https://doi.org/10.1016/j.cell.2012.09.042
Article
Google Scholar
Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377. https://doi.org/10.1016/S0092-8674(00)80110-5
Article
Google Scholar
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber M, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Parmentier M et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–726
Article
Google Scholar
Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: Studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3:23–36. https://doi.org/10.1007/bf03401665
Article
Google Scholar
Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, Murphy PM, Alkhatib G (2004) Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4 + cells. J Virol 78:2277–2287. https://doi.org/10.1128/jvi.78.5.2277-2287.2004
Article
Google Scholar
Ghorban K, Dadmanesh M, Hassanshahi G, Momeni M, Zare-Bidaki M, Arababadi MK, Kennedy D (2013) Is the CCR5 Δ 32 mutation associated with immune system-related diseases? Inflammation 36:633–642. https://doi.org/10.1007/s10753-012-9585-8
Article
Google Scholar
Ganepola S, Müßig A, Allers K, Ph D, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E, Ph D, Hofmann J, Ph D, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–697
Article
Google Scholar
Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117:2791–2799. https://doi.org/10.1182/blood-2010-09-309591
Article
Google Scholar
Hütter G, Ganepola S (2011) Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. ScientificWorldJournal 11:1068–1076. https://doi.org/10.1100/tsw.2011.102
Article
Google Scholar
Hütter G, Thiel E (2011) Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. Aids 25:273–274. https://doi.org/10.1097/QAD.0b013e328340fe28
Article
Google Scholar
Ledger S, Howe A, Turville S, Aggarwal A, Savkovic B, Ong A, Wolstein O, Boyd M, Millington M, Gorry PR, Murray JM, Symonds G (2018) Analysis and dissociation of anti-HIV effects of shRNA to CCR5 and the fusion inhibitor C46. J Gene Med 20. https://doi.org/10.1002/jgm.3006
Bassett E, Clark RF (2014) More on nicotine poisoning in infants. N Engl J Med 371:880–880. https://doi.org/10.1056/nejmc1407921
Article
Google Scholar
Moranguinho I, Valente ST (2020) Block-and-lock: new horizons for a cure for hiv-1. Viruses 12. https://doi.org/10.3390/v12121443
Herrera-Carrillo E, Berkhout B (2015) The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther 22:485–495. https://doi.org/10.1038/gt.2015.11
Article
Google Scholar
Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328. https://doi.org/10.1038/nrg2971
Article
Google Scholar
Burnett JC, Zaia JA, Rossi JJ (2012) Creating genetic resistance to HIV. Curr Opin Immunol 24:625–632. https://doi.org/10.1016/j.coi.2012.08.013
Article
Google Scholar
Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146. https://doi.org/10.1002/biot.201100054
Article
Google Scholar
Grimm D, Wang L, Lee JS, Schürmann N, Gu S, Börner K, Storm TA, Kay MA (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119. https://doi.org/10.1172/JCI43565
Article
Google Scholar
Persons DA (2010) Editorial: lentiviral vector gene therapy: effective and safe? Mol Ther 18:861–862. https://doi.org/10.1038/mt.2010.70
Article
Google Scholar
Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, Habiro K, Yang YG, Manjunath N, Shimaoka M, Shankar P (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18:370–376. https://doi.org/10.1038/mt.2009.271
Article
Google Scholar
DiGiusto DL, Stan R, Krishnan A, Li H, Rossi JJ, Zaia JA (2013) Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 5:2898–2919. https://doi.org/10.3390/v5112898
Article
Google Scholar
DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34 + cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2. https://doi.org/10.1126/scitranslmed.3000931
Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, Liang Z, Peng L, Akkina R, Rossi JJ (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19:2228–2238. https://doi.org/10.1038/mt.2011.207
Article
Google Scholar
Yan M, Liang M, Wen J, Liu Y, Lu Y, Chen ISY (2012) Single siRNA nanocapsules for enhanced RNAi delivery. J Am Chem Soc 134:13542–13545. https://doi.org/10.1021/ja304649a
Article
Google Scholar
Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451. https://doi.org/10.1038/nrg3742
Article
Google Scholar
Karlsen TA, Brinchmann JE (2013) Liposome delivery of MicroRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol Ther 21:1169–1181. https://doi.org/10.1038/mt.2013.55
Article
Google Scholar
Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. https://doi.org/10.1038/nrd3141
Article
Google Scholar
Wheeler LA, Vrbanac V, Trifonova R, Brehm MA, Gilboa-Geffen A, Tanno S, Greiner DL, Luster AD, Tager AM, Lieberman J (2013) Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 21:1378–1389. https://doi.org/10.1038/mt.2013.77
Article
Google Scholar
Krebs MD, Alsberg E (2011) Localized, targeted, and sustained siRNA delivery. Chem - A Eur J 17:3054–3062. https://doi.org/10.1002/chem.201003144
Article
Google Scholar
Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717. https://doi.org/10.1038/nbt1101
Article
Google Scholar
Katakowski JA, Palliser D (2010) SiRNA-based topical microbicides targeting sexually transmitted infections. Curr Opin Mol Ther 12:192–202
Google Scholar
Wu Y, Navarro F, Lal A, Basar E, Pandey RK, Feng Y, Lee SJ, Lieberman J, Palliser D (2010) NIH Public Access 5:84–94. https://doi.org/10.1016/j.chom.2008.12.003.Durable
Article
Google Scholar
Aagaard LA, Zhang J, von Eije KJ, Li H, Sætrom P, Amarzguioui M, Rossi JJ (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549. https://doi.org/10.1038/gt.2008.147
Article
Google Scholar
Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007. https://doi.org/10.1016/j.febslet.2005.08.004
Article
Google Scholar
Von Eije KJ, Berkhout B (2009) RNA-interference-based gene therapy approaches to HIV type-1 treatment: tackling the hurdles from bench to bedside. Antivir Chem Chemother 19:221–223. https://doi.org/10.1177/095632020901900602
Article
Google Scholar