Todd D, McNulty MS, Adair BM, Allan GM (2001) Animal circoviruses. Adv Virus Res 57:1–70. https://doi.org/10.1016/s0065-3527(01)57000-1
Article
Google Scholar
Anderson A, Hartmann K, Leutenegger CM, Proksch AL, Mueller RS, Unterer S (2017) Role of canine circovirus in dogs with acute haemorrhagic diarrhoea. Vet Rec 180(22):542. https://doi.org/10.1136/vr.103926
Article
Google Scholar
Kotsias F, Bucafusco D, Nuñez DA, Lago Borisovsky LA, Rodriguez M, Bratanich AC (2019) Genomic characterization of canine circovirus associated with fatal disease in dogs in South America. PLoS One 14(6):e0218735. https://doi.org/10.1371/journal.pone.0218735
Article
Google Scholar
Cruz TF, Batista TN, Vieira EM, Portela LMF, Baccarin AM, Gradiz JJ, Araújo Junior JP (2020) Genomic characterization of Canine circovirus detected in a dog with intermittent hemorrhagic gastroenteritis in Brazil. Ciênc Rural 50(5):e20190909. https://doi.org/10.1590/0103-8478cr20190909
Article
Google Scholar
Sun W, Wang W, Cao L, Zheng M, Zhuang X, Zhang H, Yu N, Tian M, Lu H, Jin N (2021) Genetic characterization of three porcine circovirus-like viruses in pigs with diarrhoea in China. Transbound Emerg Dis 68(2):289–295. https://doi.org/10.1111/tbed.13731
Article
Google Scholar
Decaro N, Martella V, Desario C, Lanave G, Circella E, Cavalli A, Elia G, Camero M, Buonavoglia C (2014) Genomic characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy. PLoS One 9(8):e105909. https://doi.org/10.1371/journal.pone.0105909
Article
Google Scholar
Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, Kubiski S, Gaffney P, dela Cruz Jr FN, Wang C, Delwart E, Pesavento PA (2013) Circovirus in tissues of dogs with vasculitis and hemorrhage. Emerg Infect Dis 19(4):534–541. https://doi.org/10.3201/eid1904.121390
Article
Google Scholar
Zaccaria G, Malatesta D, Scipioni G, Di Felice E, Campolo M, Casaccia C et al (2016) Circovirus in domestic and wild carnivores: an important opportunistic agent? Virology 490:69–74. https://doi.org/10.1016/j.virol.2016.01.007
Article
Google Scholar
Plog S, Kubiski S, Enders J, Lübke-Becker A, Pesavento PA, Gruber AD (2017) Detection of dog circovirus in a dog without typical lesions – what do we know about subclinical infection? J Comp Pathol 156(1):75. https://doi.org/10.1016/j.jcpa.2016.11.058
Article
Google Scholar
Kapoor A, Dubovi EJ, Henriquez-Rivera JA, Lipkin WI (2012) Complete genome sequence of the first canine circovirus. J Virol 86(12):7018. https://doi.org/10.1128/JVI.00791-12
Article
Google Scholar
Hsu H-S, Lin T-H, Wu H-Y, Lin L-S, Chung C-S, Chiou M-T, Lin CN (2016) High detection rate of dog circovirus in diarrheal dogs. BMC Vet Res 12(1):116. https://doi.org/10.1186/s12917-016-0722-8
Article
Google Scholar
Song T, Hao J, Zhang R, Tang M, Li W, Hui W, Fu Q, Wang C, Xin S, Zhang S, Rui P, Ren H, Ma Z (2019) First detection and phylogenetic analysis of porcine circovirus type 2 in raccoon dogs. BMC Vet Res 15(1):107. https://doi.org/10.1186/s12917-019-1856-2
Article
Google Scholar
Gil L, Izquierdo A, Lazo L, Valdés I, Ambala P, Ochola L, Marcos E, Suzarte E, Kariuki T, Guzmán G, Guillén G, Hermida L (2014) Capsid protein: evidences about the partial protective role of neutralizing antibody-independent immunity against dengue in monkeys. Virology 456–457:70–76. https://doi.org/10.1016/j.virol.2014.03.011
Article
Google Scholar
Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirus replicase proteins in pathogenesis. Virus Res 133(1):88–100. https://doi.org/10.1016/j.virusres.2007.02.017
Article
Google Scholar
Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20(13):3279–3285. https://doi.org/10.1093/nar/20.13.3279
Article
Google Scholar
Akhtar N, Joshi A, Kaushik V, Kumar M, Mannan MA (2021) In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb Pathog 155:104879. https://doi.org/10.1016/j.micpath.2021.104879
Article
Google Scholar
Akhtar N, Joshi A, Singh J, Kaushik V (2021) Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: an immunoinformatics approach. J Mol Liq 335:116586. https://doi.org/10.1016/j.molliq.2021.116586
Article
Google Scholar
Akhtar N, Joshi A, Singh B, Kaushik V (2020) Immuno-informatics quest against COVID-19/SARS-COV-2: determining putative T-cell epitopes for vaccine prediction. Infect Disord Drug Targets 20. https://doi.org/10.2174/1871526520666200921154149
Joshi A, Joshi BC, Mannan MA, Kaushik V (2020) Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked 19:100338. https://doi.org/10.1016/j.imu.2020.100338
Article
Google Scholar
Kaushik V, Singh B, Singh J (2018) Bioinformatics techniques used in hepatitis C virus research. J Pure Appl Microbiol 11:921–932
Article
Google Scholar
Kaushik V, Chauhan G, Singh J (2014) In Silico peptide-based vaccine design against non-structural Protein 5 of Hepatitis C Virus. Int J Pharm Pharm Sci 6:80–82
Google Scholar
Krishnan GS, Joshi A, Akhtar N, Kaushik V (2021) Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 150:104728. https://doi.org/10.1016/j.micpath.2020.104728
Article
Google Scholar
Negahdaripour M, Eslami M, Nezafat N, Hajighahramani N, Ghoshoon MB, Shoolian E, Dehshahri A, Erfani N, Morowvat MH, Ghasemi Y (2017) A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol 54:402–416. https://doi.org/10.1016/j.meegid.2017.08.002
Article
Google Scholar
Sanami S, Azadegan-Dehkordi F, Rafieian-Kopaei M, Salehi M, Ghasemi-Dehnoo M, Mahooti M, Alizadeh M, Bagheri N (2021) Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci Rep 11(1):12397. https://doi.org/10.1038/s41598-021-91997-4
Article
Google Scholar
Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK (2020) Exploring Lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther 26(4):2089–2107. https://doi.org/10.1007/s10989-019-10003-8
Article
Google Scholar
Yazdani Z, Rafiei A, Valadan R, Ashrafi H, Pasandi MS, Kardan M (2020) Designing a potent L1 protein-based HPV peptide vaccine: a bioinformatics approach. Comput Biol Chem 85:107209. https://doi.org/10.1016/j.compbiolchem.2020.107209
Article
Google Scholar
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48(W1):W449–W454. https://doi.org/10.1093/nar/gkaa379
Article
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4. https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454. https://doi.org/10.1093/nar/gkw329
Article
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server):W363–W367. https://doi.org/10.1093/nar/gki481
Article
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Article
Google Scholar
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169
Article
Google Scholar
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001
Article
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) Proteomics Protoc. Handb. Humana Press, Totowa, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571
Chapter
Google Scholar
Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25(17):2200–2207. https://doi.org/10.1093/bioinformatics/btp386
Article
Google Scholar
Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47(W1):W402–W407. https://doi.org/10.1093/nar/gkz297
Article
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213
Article
Google Scholar
Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. https://doi.org/10.1007/BF00228148
Article
Google Scholar
Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC et al (2005) (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(Web Server):W526–W531. https://doi.org/10.1093/nar/gki376
Article
Google Scholar
Niagro FD, Forsthoefel AN, Lawther RP, Kamalanathan L, Ritchie BW, Latimer KS, Lukert PD (1998) Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Arch Virol 143(9):1723–1744. https://doi.org/10.1007/s007050050412
Article
Google Scholar
Jiang M, Guo J, Zhang G, Jin Q, Liu Y, Jia R, Wang A (2020) Fine mapping of linear B cell epitopes on capsid protein of porcine circovirus 3. Appl Microbiol Biotechnol 104(14):6223–6234. https://doi.org/10.1007/s00253-020-10664-2
Article
Google Scholar
Joshi A, Pathak DC, Mannan MA, Kaushik V (2021) In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Netw Model Anal Health Inform Bioinforma 10(1):37. https://doi.org/10.1007/s13721-021-00315-5
Article
Google Scholar
Liu YF, Lin CY, Hong HM (2017) In silico design, synthesis and potency of an epitope-based vaccine against foot-and-mouth disease virus. Int J Pharmacol 13(2):122–133. https://doi.org/10.3923/ijp.2017.122.133
Article
Google Scholar
Mayahi V, Esmaelizad M, Ganjalikhany MR (2020) Development of Avian avulavirus 1 epitope-based vaccine pattern based on epitope prediction and molecular docking analysis: an immunoinformatic approach. Int J Pept Res Ther 26(3):1513–1522. https://doi.org/10.1007/s10989-019-09952-x
Article
Google Scholar
Mugunthan SP, Harish MC (2021) Multi-epitope-based vaccine designed by targeting cytoadherence proteins of Mycoplasma gallisepticum. ACS Omega 6(21):13742–13755. https://doi.org/10.1021/acsomega.1c01032
Article
Google Scholar
Ben-Yedidia T, Arnon R (2007) Epitope-based vaccine against influenza. Expert Rev Vaccines 6(6):939–948. https://doi.org/10.1586/14760584.6.6.939
Article
Google Scholar
Qamar MTU, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S (2019) Epitope-based peptide vaccine design and target site depiction against Middle East respiratory syndrome coronavirus: an immune-informatics study. J Transl Med 17(1):362. https://doi.org/10.1186/s12967-019-2116-8
Article
Google Scholar
Oyarzún P, Kobe B (2016) Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Hum Vaccines Immunother 12(3):763–767. https://doi.org/10.1080/21645515.2015.1094595
Article
Google Scholar
Adhikari UK, Tayebi M, Rahman MM (2018) Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging Oropouche virus. J Immunol Res 2018:6718083–6718022. https://doi.org/10.1155/2018/6718083
Article
Google Scholar
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN (2019) Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 38(10):2898–2915. https://doi.org/10.1080/07391102.2019.1647286
Article
Google Scholar
Ghaffari-Nazari H, Tavakkol-Afshari J, Jaafari MR, Tahaghoghi-Hajghorbani S, Masoumi E, Jalali SA (2015) Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c Mice. PLoS One 10(11):e0142563. https://doi.org/10.1371/journal.pone.0142563
Article
Google Scholar