Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492
Article
Google Scholar
Ellis H, Ma CX (2019) PI3K inhibitors in breast cancer therapy. Curr Oncol Rep 21(12):110. https://doi.org/10.1007/s11912-019-0846-7
Article
Google Scholar
McMillin GA, Wadelius M, Pratt VM (2018) 11 - Pharmacogenetics. In: Rifai N, Horvath AR, Wittwer CT (eds) Principles and applications of molecular diagnostics. Elsevier, Amsterdam, pp 295–327
Wisinski KB, Tevaarwerk AJ, O'Regan RM (2018) 70—endocrine therapy for breast cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ (eds) The Breast (Fifth Edition). Elsevier, Philadelphia, pp 907–923.e906
Vogel VG (2018) 16 - Primary Prevention of Breast Cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ (eds) The Breast (Fifth Edition). Elsevier, Philadelphia, pp 219–236.e213
Fuentes N, Silveyra P (2019) Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 116:135–170. https://doi.org/10.1016/bs.apcsb.2019.01.001
Article
Google Scholar
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D (2014) Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncol Rep 32(1):3–15. https://doi.org/10.3892/or.2014.3190
Article
Google Scholar
Ali S, Rasool M, Chaoudhry H, Pushparaj PN, Jha P, Hafiz A, Mahfooz M, Abdus Sami G, Azhar Kamal M, Bashir S, Ali A, Sarwar Jamal M (2016) Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 12(3):135–139. https://doi.org/10.6026/97320630012135
Article
Google Scholar
Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, Zhang N, Zhang H, Liu Y, Chen T, Li C, Wang L, Zhao W, Yang Q (2019) circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther 27(9):1638–1652. https://doi.org/10.1016/j.ymthe.2019.05.011
Article
Google Scholar
Gao Y, Zhang W, Liu C, Li G (2019) miR-200 affects tamoxifen resistance in breast cancer cells through regulation of MYB. Sci Rep 9(1):18844. https://doi.org/10.1038/s41598-019-54289-6
Article
Google Scholar
Amiruddin A, Massi MN, Islam AA, Patellongi I, Pratama MY, Sutandyo N, Natzir R, Hatta M, Md Latar NH, Wahid S (2022) microRNA-221 and tamoxifen resistance in luminal-subtype breast cancer patients: A case-control study. Ann Med Surg (Lond) 73:103092. https://doi.org/10.1016/j.amsu.2021.103092
Article
Google Scholar
Abdel-Hafiz HA (2017) Epigenetic mechanisms of tamoxifen resistance in luminal breast cancer. Diseases 5(3). https://doi.org/10.3390/diseases5030016
Hermawan A, Putri H, Utomo RY (2020) Comprehensive bioinformatics study reveals targets and molecular mechanism of hesperetin in overcoming breast cancer chemoresistance. Mol Divers 24(4):933–947. https://doi.org/10.1007/s11030-019-10003-2
Article
Google Scholar
Shanmugam MK, Dai X, Kumar AP, Tan BKH, Sethi G, Bishayee A (2014) Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett 346(2):206–216. https://doi.org/10.1016/j.canlet.2014.01.016
Article
Google Scholar
Allouche Y, Warleta F, Campos M, Sánchez-Quesada C, Uceda M, Beltrán G, Gaforio JJ (2011) Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA Damage. J Agric Food Chem 59(1):121–130. https://doi.org/10.1021/jf102319y
Article
Google Scholar
Gu G, Barone I, Gelsomino L, Giordano C, Bonofiglio D, Statti G, Menichini F, Catalano S, Andò S (2012) Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERα/Sp1-mediated p53 activation. J Cell Physiol 227(10):3363–3372. https://doi.org/10.1002/jcp.24035
Article
Google Scholar
Fu D, Zhang B, Yang L, Huang S, Xin W (2020) Development of an immune-related risk signature for predicting prognosis in lung squamous cell carcinoma. Front Genet 11(978). https://doi.org/10.3389/fgene.2020.00978
Udhaya Kumar S, Thirumal Kumar D, Siva R, George Priya Doss C, Younes S, Younes N, Sidenna M, Zayed H (2020) Dysregulation of signaling pathways due to differentially expressed genes from the B-cell transcriptomes of systemic lupus erythematosus patients—a bioinformatics approach. Front Bioeng Biotechnol 8(276). https://doi.org/10.3389/fbioe.2020.00276
Kumar SU, Kumar DT, Siva R, Doss CGP, Zayed H (2019) Integrative bioinformatics approaches to map potential novel genes and pathways involved in ovarian cancer. Front Bioeng Biotechnol 7(391). https://doi.org/10.3389/fbioe.2019.00391
Udhaya Kumar S, Thirumal Kumar D, Bithia R, Sankar S, Magesh R, Sidenna M, George Priya Doss C, Zayed H (2020) Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: a systematic and bioinformatics approach. Front Genet 11(734). https://doi.org/10.3389/fgene.2020.00734
Wan J, Jiang S, Jiang Y, Ma W, Wang X, He Z, Wang X, Cui R (2020) Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer. Front Genet 10(1377). https://doi.org/10.3389/fgene.2019.01377
Hermawan A, Putri H (2020) Identification of potential gene associated with berberine in overcoming tamoxifen resistance by functional network analysis. J Appl Pharmaceut Sci. https://doi.org/10.7324/JAPS.2020.10702
Elias D, Vever H, Lænkholm AV, Gjerstorff MF, Yde CW, Lykkesfeldt AE, Ditzel HJ (2015) Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene 34(15):1919–1927. https://doi.org/10.1038/onc.2014.138
Article
Google Scholar
Lv C, Wu X, Wang X, Su J, Zeng H, Zhao J, Lin S, Liu R, Li H, Li X, Zhang W (2017) The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci Rep 7(1):352. https://doi.org/10.1038/s41598-017-00535-8
Article
Google Scholar
Aubert J, Bar-Hen A, Daudin JJ, Robin S (2004) Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinformatics 5(1):125. https://doi.org/10.1186/1471-2105-5-125
Article
Google Scholar
Oliveros JC (2007) Venny. An interactive tool for comparing lists with Venn's diagrams. Venny
Google Scholar
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211
Article
Google Scholar
Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923
Article
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Christian v M (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131
Article
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303
Article
Google Scholar
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11
Article
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Article
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1–pl1. https://doi.org/10.1126/scisignal.2004088
Article
Google Scholar
Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64. https://doi.org/10.1186/s13045-018-0605-5
Article
Google Scholar
Katoh M (2009) FGFR2 Abnormalities Underlie a Spectrum of Bone, Skin, and Cancer Pathologies. J Investig Dermatol 129(8):1861–1867. https://doi.org/10.1038/jid.2009.97
Article
Google Scholar
Hou H, Sun D, Zhang X (2019) The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int 19(1):216. https://doi.org/10.1186/s12935-019-0937-4
Article
Google Scholar
Hermawan A, Ikawati M, Khumaira A, Putri H, Jenie RI, Angraini SM, Muflikhasari HA (2021) Bioinformatics and in vitro studies reveal the importance of p53, PPARG and notch signaling pathway in inhibition of breast cancer stem cells by hesperetin. Adv Pharm Bull 11(2):351–360. https://doi.org/10.34172/apb.2021.033
Article
Google Scholar
Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA (2021) Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharmaceut J 29(1):12–26. https://doi.org/10.1016/j.jsps.2020.12.002
Article
Google Scholar
Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria J-C, Massard C, Lévy C, Arnedos M, Lacroix-Triki M, Garrabey J, Boursin Y, Deloger M, Fu Y, Commo F, Scott V, Lacroix L, Dieci MV, Kamal M, Diéras V, Gonçalves A, Ferrerro J-M, Romieu G, Vanlemmens L, Reynier M-AM, Théry J-C, Du FL, Guiu S, Dalenc F, Clapisson G, Bonnefoi H, Jimenez M, Tourneau CL, André F (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13(12):e1002201. https://doi.org/10.1371/journal.pmed.1002201
Article
Google Scholar
Turturro SB, Najor MS, Yung T, Portt L, Malarkey CS, Abukhdeir AM, Cobleigh MA (2019) Somatic loss of PIK3R1 may sensitize breast cancer to inhibitors of the MAPK pathway. Breast Cancer Res Treat 177(2):325–333. https://doi.org/10.1007/s10549-019-05320-x
Article
Google Scholar
Chen L, Yang L, Yao L, Kuang X-Y, Zuo W-J, Li S, Qiao F, Liu Y-R, Cao Z-G, Zhou S-L, Zhou X-Y, Yang W-T, Shi J-X, Huang W, Hu X, Shao Z-M (2018) Characterization of PIK3CA and PIK3R1 somatic mutations in Chinese breast cancer patients. Nat Commun 9(1):1–17. https://doi.org/10.1038/s41467-018-03867-9
Article
Google Scholar
Thorpe LM, Spangle JM, Ohlson CE, Cheng H, Roberts TM, Cantley LC, Zhao JJ (2017) PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. PNAS 114(27):7095–7100. https://doi.org/10.1073/pnas.1704706114
Article
Google Scholar
Yang J, Li X, Yang H, Long C (2021) Oleanolic acid improves the symptom of renal ischemia reperfusion injury via the PI3K/AKT pathway. UIN 105(3-4):215–220. https://doi.org/10.1159/000506778
Article
Google Scholar
Wang S-S, Zhang Q-L, Chu P, Kong L-Q, Li G-Z, Li Y-Q, Yang L, Zhao W-J, Guo X-H, Tang Z-Y (2020) Synthesis and antitumor activity of α,β-unsaturated carbonyl moiety-containing oleanolic acid derivatives targeting PI3K/AKT/mTOR signaling pathway. Bioorg Chem 101:104036. https://doi.org/10.1016/j.bioorg.2020.104036
Article
Google Scholar
Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC (2005) The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170(3):455–464. https://doi.org/10.1083/jcb.200503088
Article
Google Scholar
Chen IC, Hsiao L-P, Huang IW, Yu H-C, Yeh L-C, Lin C-H, Wei-Wu Chen T, Cheng A-L, Lu Y-S (2017) Phosphatidylinositol-3 kinase inhibitors, Buparlisib and Alpelisib, sensitize estrogen receptor-positive breast cancer cells to tamoxifen. Sci Rep 7(1):9842. https://doi.org/10.1038/s41598-017-10555-z
Article
Google Scholar
Lu YS, Ro J, Tseng LM, Chao TY, Chitapanarux I, Valenti R, Canatar A, Salomon H, Park YH (2016) Abstract P4-13-27: A phase Ib dose de-escalation study of combined tamoxifen and goserelin acetate with alpelisib (BYL719) or buparlisib (BKM120) in premenopausal patients with HR+/HER2– locally advanced or metastatic breast cancer. Cancer Res 76(4_Supplement):P4-13-27–P14-13-27. https://doi.org/10.1158/1538-7445.SABCS15-P4-13-27
Article
Google Scholar
Cidado J, Park BH (2012) Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia 17(3):205–216. https://doi.org/10.1007/s10911-012-9264-2
Article
Google Scholar
Cooper G (2019) Sinauer Associates is an imprint of. In: The Cell: A Molecular Approach, 8th edn. Oxford University Press, Oxford; New York
Hermawan A, Putri H, Utomo RY (2021) Exploration of targets and molecular mechanisms of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer: a bioinformatics study. Netw Model Anal Health Inform Bioinforma 10(1):30. https://doi.org/10.1007/s13721-021-00303-9
Article
Google Scholar
Paplomata E, O’Regan R (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 6(4):154–166. https://doi.org/10.1177/1758834014530023
Article
Google Scholar
Koboldt DC, Fulton RS, MD ML, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, Wilson RK, Ally A, Balasundaram M, YSN B, Carlsen R, Carter C, Chu A, Chuah E, H-JE C, RJN C, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HI, Mayo M, Moore RA, Mungall AJ, Pleasance E, Gordon Robertson A, Schein JE, Shafiei A, Sipahimalani P, Slobodan JR, Stoll D, Tam A, Thiessen N, Varhol RJ, Wye N, Zeng T, Zhao Y, Birol I, Jones SJM, Marra MA, Cherniack AD, Saksena G, Onofrio RC, Pho NH, Carter SL, Schumacher SE, Tabak B, Hernandez B, Gentry J, Nguyen H, Crenshaw A, Ardlie K, Beroukhim R, Winckler W, Getz G, Gabriel SB, Meyerson M, Chin L, Park PJ, Kucherlapati R, Hoadley KA, Todd Auman J, Fan C, Turman YJ, Shi Y, Li L, Topal MD, He X, Chao H-H, Prat A, Silva GO, Iglesia MD, Zhao W, Usary J, Berg JS, Adams M, Booker J, Wu J, Gulabani A, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Mose LE, Jefferys SR, Balu S, Parker JS, Neil Hayes D, Perou CM, Malik S, Mahurkar S, Shen H, Weisenberger DJ, Triche T Jr, Lai PH, Bootwalla MS, Maglinte DT, Berman BP, Van Den Berg DJ, Baylin SB, Laird PW, Creighton CJ, Donehower LA, Getz G, Noble M, Voet D, Saksena G, Gehlenborg N, DiCara D, Zhang J, Zhang H, Wu C-J, Yingchun Liu S, Lawrence MS, Zou L, Sivachenko A, Lin P, Stojanov P, Jing R, Cho J, Sinha R, Park RW, Nazaire M-D, Robinson J, Thorvaldsdottir H, Mesirov J, Park PJ, Chin L, Reynolds S, Kreisberg RB, Bernard B, Bressler R, Erkkila T, Lin J, Thorsson V, Zhang W, Shmulevich I, Ciriello G, Weinhold N, Schultz N, Gao J, Cerami E, Gross B, Jacobsen A, Sinha R, Arman Aksoy B, Antipin Y, Reva B, Shen R, Taylor BS, Ladanyi M, Sander C, Anur P, Spellman PT, Lu Y, Liu W, RRG V, Mills GB, Akbani R, Zhang N, Broom BM, Casasent TD, Wakefield C, Unruh AK, Baggerly K, Coombes K, Weinstein JN, Haussler D, Benz CC, Stuart JM, Benz SC, Zhu J, Szeto CC, Scott GK, Yau C, Paull EO, Carlin D, Wong C, Sokolov A, Thusberg J, Mooney S, Ng S, Goldstein TC, Ellrott K, Grifford M, Wilks C, Ma S, Craft B, Yan C, Hu Y, Meerzaman D, Gastier-Foster JM, Bowen J, Ramirez NC, Black AD, Pyatt RE, White P, Zmuda EJ, Frick J, Lichtenberg TM, Brookens R, George MM, Gerken MA, Harper HA, Leraas KM, Wise LJ, Tabler TR, McAllister C, Barr T, Hart-Kothari M, Tarvin K, Saller C, Sandusky G, Mitchell C, Iacocca MV, Brown J, Rabeno B, Czerwinski C, Petrelli N, Dolzhansky O, Abramov M, Voronina O, Potapova O, Marks JR, Suchorska WM, Murawa D, Kycler W, Ibbs M, Korski K, Spychała A, Murawa P, Brzeziński JJ, Perz H, Łaźniak R, Teresiak M, Tatka H, Leporowska E, Bogusz-Czerniewicz M, Malicki J, Mackiewicz A, Wiznerowicz M, Van Le X, Kohl B, Viet Tien N, Thorp R, Van Bang N, Sussman H, Duc Phu B, Hajek R, Phi Hung N, Viet The Phuong T, Quyet Thang H, Zaki Khan K, Penny R, Mallery D, Curley E, Shelton C, Yena P, Ingle JN, Couch FJ, Lingle WL, King TA, Maria Gonzalez-Angulo A, Mills GB, Dyer MD, Liu S, Meng X, Patangan M, The Cancer Genome Atlas N, Genome sequencing centres: Washington University in St L, Genome characterization centres BCCA, Broad I, Brigham, Women’s H, Harvard Medical S, University of North Carolina CH, University of Southern California/Johns H, Genome data analysis: Baylor College of M, Institute for Systems B, Memorial Sloan-Kettering Cancer C, Oregon H, Science U, The University of Texas MDACC, University of California SCBI, Nci, Biospecimen core resource: Nationwide Children’s Hospital Biospecimen Core R, Tissue source sites A-I, Christiana, Cureline, Duke University Medical C, The Greater Poland Cancer C, Ilsbio, International Genomics C, Mayo C, Mskcc, Center MDAC (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412
Article
Google Scholar
Cizkova M, Vacher S, Meseure D, Trassard M, Susini A, Mlcuchova D, Callens C, Rouleau E, Spyratos F, Lidereau R, Bièche I (2013) PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer 13(1):545. https://doi.org/10.1186/1471-2407-13-545
Article
Google Scholar
Chagpar RB, Links PH, Pastor MC, Furber LA, Hawrysh AD, Chamberlain MD, Anderson DH (2010) Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. PNAS 107(12):5471–5476. https://doi.org/10.1073/pnas.0908899107
Article
Google Scholar
Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18(3):1379–1387
Article
Google Scholar
Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U (2010) The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 16(4):429–437. https://doi.org/10.1038/nm.2099
Article
Google Scholar
Rordorf-Nikolic T, Horn DJV, Chen D, White MF, Backer JM (1995) Regulation of Phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins: full activation requires occupancy of Both SH2 domains in the 85-kDa regulatory subunit (∗). J Biol Chem 270(8):3662–3666. https://doi.org/10.1074/jbc.270.8.3662
Article
Google Scholar
Miled N, Yan Y, Hon W-C, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317(5835):239–242. https://doi.org/10.1126/science.1135394
Article
Google Scholar
Li X, Song Y, Zhang P, Zhu H, Chen L, Xiao Y, Xing Y (2016) Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway. Tumor Biol 37(6):7599–7613. https://doi.org/10.1007/s13277-015-4655-9
Article
Google Scholar
Gui B, Hua F, Chen J, Xu Z, Sun H, Qian Y (2014) Protective effects of pretreatment with oleanolic acid in rats in the acute phase of hepatic ischemia-reperfusion injury: role of the PI3K/Akt Pathway. Mediators Inflamm 2014. https://doi.org/10.1155/2014/451826
Tang C, Lu YH, Xie JH, Wang F, Zou JN, Yang JS, Xing YY, Xi T (2009) Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs 20(4):249–258. https://doi.org/10.1097/cad.0b013e328327d476
Article
Google Scholar
Wu J, Yang C, Guo C, Li X, Yang N, Zhao L, Hang H, Liu S, Chu P, Sun Z, Sun B, Lin Y, Peng J, Han G, Wang S, Tang Z (2016) SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells. Chem Biol Interact 244:94–104. https://doi.org/10.1016/j.cbi.2015.11.013
Article
Google Scholar
Folgiero V, Di Carlo SE, Bon G, Spugnini EP, Di Benedetto A, Germoni S, Pia Gentileschi M, Accardo A, Milella M, Morelli G, Bossi G, Mottolese M, Falcioni R (2012) Inhibition of p85, the non-catalytic subunit of phosphatidylinositol 3-kinase, exerts potent antitumor activity in human breast cancer cells. Cell Death Dis 3:e440. https://doi.org/10.1038/cddis.2012.179
Article
Google Scholar
Tang Z-Y, Li Y, Tang Y-T, Ma X-D, Tang Z-Y (2022) Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 145:112397. https://doi.org/10.1016/j.biopha.2021.112397
Article
Google Scholar
Jiang Q, Yang X, Du P, Zhang H, Zhang T (2016) Dual strategies to improve oral bioavailability of oleanolic acid: Enhancing water-solubility, permeability and inhibiting cytochrome P450 isozymes. Eur J Pharm Biopharm 99:65–72. https://doi.org/10.1016/j.ejpb.2015.11.013
Article
Google Scholar
Deeb D, Gao X, Liu Y, Varma NR, Arbab AS, Gautam SC (2013) Inhibition of telomerase activity by oleanane triterpenoid CDDO-Me in pancreatic cancer cells is ROS-dependent. Molecules 18(3):3250–3265
Article
Google Scholar