Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, Kapata N, Mfinanga S, Hasnain SE, Katoto PDMC, Bulabula ANH, Sam-Agudu NA, Nachega JB, Tiberi S, McHugh TD, Abubakar I, Zumla A (2021) Global Tuberculosis Report 2020–reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis 11(21):1201–9712. https://doi.org/10.1016/j.ijid.2021.02.107
Article
Google Scholar
Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662 https://doi.org/10.1038/nrmicro1211
Article
Google Scholar
Ndiaye B, Thienemann F, Ota M, Landry B, Camara M, Dièye S, Esmail H, Goliath R, Huygen K, January V, Ndiaye I, Qni T, Raine M, Romano M, Satti I, Sutton S, Thiam A, Wilkinson KA, Mboup S, Wilkinson RJ, Mcshane H (2015) MVA85A 030 trial investigators safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 3(3):190–200. https://doi.org/10.1016/S2213-2600(15)00037-5 Epub 2015 Feb 26
Article
Google Scholar
Mortimer TD, Weber AM, Pepperell CS (2018) Signatures of selection at drug resistance loci in Mycobacterium tuberculosis. mSystems 3(1):e00108–e00117. https://doi.org/10.1128/mSystems.00108-17
Article
Google Scholar
Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CR, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396(6707):190–190 https://doi.org/10.1038/31159
Article
Google Scholar
Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99(6):3684–3689. https://doi.org/10.1073/pnas.052548299
Article
Google Scholar
Forrellad MA, Klepp LI, Gioffré A, Sabio Y, Garcia J, Morbidoni HR, Santangelo MDLP, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4(1):3–66 https://doi.org/10.4161/viru.22329
Article
Google Scholar
Mazandu GK, Mulder NJ (2012) Function prediction and analysis of Mycobacterium tuberculosis hypothetical proteins. Int J Mol Sci 13(6):7283–7302 https://doi.org/10.3390/ijms13067283
Article
Google Scholar
Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST, Brosch R (2004) Macro-array and bioinformatic analyses reveal mycobacterial ‘core’genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150(2):483–496 https://doi.org/10.1099/mic.0.26662-0
Article
Google Scholar
Mustafa A (2005) Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Med Princ Pract 14(Suppl. 1):27–34 https://doi.org/10.1159/000086182
Article
Google Scholar
Ahmad S, El-Shazly S, Mustafa A, Al-Attiyah R (2004) Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand J Immunol 60(4):382–391 https://doi.org/10.1111/j.0300-9475.2004.01490.x
Article
Google Scholar
Panigada M, Sturniolo T, Besozzi G, Boccieri MG, Sinigaglia F, Grassi GG, Grassi F (2002) Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun 70(1):79–85 https://doi.org/10.1128/IAI.70.1.79-85.2002
Article
Google Scholar
Macalino SJY, Billones JB, Organo VG, Carrillo MCO (2020) In silico strategies in tuberculosis drug discovery. Molecules 25(3):665 https://doi.org/10.3390%2Fmolecules25030665
Article
Google Scholar
Gomez M, Johnson S, Gennaro ML (2000) Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun 68(4):2323–2327 https://doi.org/10.1128/IAI.68.4.2323-2327.2000
Article
Google Scholar
Gazi MA, Kibria MG, Mahfuz M, Islam MR, Ghosh P, Afsar MN, Khan MA, Ahmed T (2016) Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: an insilico approach for prioritizing the targets. Gene 591(2):442–455 https://doi.org/10.1016/j.gene.2016.06.057
Article
Google Scholar
Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong W-B, Niu S (2021) In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Rep 11(1):1–16 https://doi.org/10.1038/s41598-020-80899-6
Article
Google Scholar
Sarojini S, Mundayoor S (2020) An ancestral genomic locus in Mycobacterium tuberculosis clinical isolates from India hints the genetic link with Mycobacterium canettii. Int. Microbiol 23(3):397–404 https://doi.org/10.1007/s10123-019-00113-0
Article
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, vol 571-607 https://doi.org/10.1385/1-59259-890-0:571
Google Scholar
Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6):1102–1104 https://doi.org/10.2144/00286ir01
Article
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268 https://doi.org/10.1093/nar/gkz991
Article
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy S, Luciani A, Potter S, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res. 47(D1):D427–D432 https://doi.org/10.1093/nar/gky995
Article
Google Scholar
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28(1):231–234 https://doi.org/10.1093/nar/28.1.231
Article
Google Scholar
Rashid M, Saha S, Raghava GP (2007) Support vector machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinform 8(1):1–9 https://doi.org/10.1186/1471-2105-8-337
Article
Google Scholar
Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5):1402–1406 https://doi.org/10.1110/ps.03479604
Article
Google Scholar
Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653 https://doi.org/10.1093/bioinformatics/17.7.646
Article
Google Scholar
Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics (Oxford, England) 14(4):378–379 https://doi.org/10.1093/bioinformatics/14.4.378
Article
Google Scholar
Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29(1):37–40 https://doi.org/10.1093/bib/3.3.225
Article
Google Scholar
Shen H-B, Chou KC (2009) Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol 256(3):441–446 https://doi.org/10.1016/j.jtbi.2008.10.007
Article
MATH
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):1–7 https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Model 20(6):1–6 https://doi.org/10.1007/s00894-014-2278-5
Article
Google Scholar
Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851 https://doi.org/10.1093/bioinformatics/btt619
Article
Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Article
Google Scholar
Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform 9(1):1–12 https://doi.org/10.1186/1471-2105-9-62
Article
Google Scholar
Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform 8(1):1–12 https://doi.org/10.1186/1471-2105-8-424
Article
Google Scholar
Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M (2015) Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 67(11):641–650 https://doi.org/10.1007/s00251-015-0873-y
Article
Google Scholar
Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Paper presented at the International Conference on Artificial Immune Systems. https://doi.org/10.1007/978-3-540-30220-9_16.
Google Scholar
Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48 https://doi.org/10.1002/prot.21078
Article
Google Scholar
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29 https://doi.org/10.1093/nar/gkx346
Article
Google Scholar
Buchan DW, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47(W1):W402–W407 https://doi.org/10.1093/nar/gkz297
Article
Google Scholar
Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684 https://doi.org/10.1093/bioinformatics/11.6.681
Article
Google Scholar
Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120 https://doi.org/10.1016/0022-2836(78)90297-8
Article
Google Scholar
Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815 https://doi.org/10.1006/jmbi.1993.1626
Article
Google Scholar
Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(suppl_2):W526–W531 https://doi.org/10.1093/nar/gkh468
Article
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291 https://doi.org/10.1107/S0021889892009944
Article
Google Scholar
Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170. https://doi.org/10.1126/science.1853201
Article
Google Scholar
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–W410. https://doi.org/10.1093/nar/gkm290
Article
Google Scholar
Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40(W1):W294–W297 https://doi.org/10.1093/nar/gkt458
Article
Google Scholar
Al-Attiyah RA, Mustafa AS (2010) Characterization of human cellular immune responses to Mycobacterium tuberculosis proteins encoded by genes predicted in the RD15 genomic region that is absent in Mycobacterium bovis BCG. FEMS Immunol Med Microbiol 59(2):177–187 https://doi.org/10.1128/IAI.00199-08
Article
Google Scholar
Restrepo-Montoya D, Vizcaíno C, Niño LF, Ocampo M, Patarroyo ME, Patarroyo MA (2009) Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinform 10(1):1–9 https://doi.org/10.1186/1471-2105-10-134
Article
Google Scholar
Kumar S (2020) In silico identification of novel tuberculosis drug targets in Mycobacterium tuberculosisP450 enzymes by interaction study with azole drugs. Malays J Med Health Sci 16(1):24–30
Google Scholar
Shanmugham B, Pan A (2013) Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 8(3):e59126 https://doi.org/10.1371/journal.pone.0059126
Article
Google Scholar
Harold LK, Antoney J, Ahmed FH, Hards K, Carr PD, Rapson T, Cook GM (2019) FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. J Biol Chem 294(8):2903–5814 https://doi.org/10.1074/jbc.RA118.006237
Article
Google Scholar
Ilinskaya AN, Dobrovolskaia MA (2016) Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol 299:70–77 https://doi.org/10.1016/j.taap.2016.01.005
Article
Google Scholar
Mustafa AS (2013) In silico analysis and experimental validation of Mycobacterium tuberculosis-specific proteins and peptides of Mycobacterium tuberculosis for immunological diagnosis and vaccine development. Med Princ Pract 22(Suppl. 1):43–51 https://doi.org/10.1159/000354206
Article
Google Scholar
Elhag M, Sati AOM, Saadaldin MM, Hassan MA (2019) Immunoinformatics prediction of epitope based peptide vaccine against Mycobacterium tuberculosis PPE65 family protein. bioRxiv:755983 https://doi.org/10.1101/755983
Saikat ASM, Islam R, Mahmud S, Imran M, Sayeed A, Alam MS, Uddin M (2020) Structural and functional annotation of uncharacterized protein NCGM946K2_146 of Mycobacterium tuberculosis: an in-silico approach. Paper Present Multidisciplinary Digit Publishing Inst Proc. 66(1):p13 https://doi.org/10.3390/proceedings2020066013
Google Scholar
Beg M, Shivangi TS, Meena L (2019) Systematic analysis to assist the significance of Rv1907c gene with the pathogenic potentials of Mycobacterium tuberculosis H37Rv. J Biotechnol Biomater 8(287):2. https://doi.org/10.4172/2155-952X.1000287
Article
Google Scholar
Bhagat CB, Tank SK, Dudhagara PR, Trivedi ND, Trivedi UN (2014) In silico study of target proteins for Mycobacterium tuberculosis. Am J Phytomed Clin Ther 2:455–462
Google Scholar
Fiser A (2010) Template-based protein structure modeling. Methods Mol Biol 673:73–94 https://doi.org/10.1007/978-1-60761-842-3_6
Article
Google Scholar