Fonseca MI, Tejerina MR, Sawostjanik-Afanasiuk SS, Giorgio EM, Barchuk ML, Zapata PD, Villalba LL (2016) Preliminary studies of new strains of Trametes sp. from Argentina for laccase production ability. Braz J Microbiol 47(2):287–297. https://doi.org/10.1016/j.bjm.2016.01.002
Article
Google Scholar
Savinova OS, Moiseenko KV, Vavilova EA, Chulkin AM, Fedorova TV, Tyazhelova TV, Vasina DV (2019) Evolutionary relationships between the laccase genes of polyporales: orthology based classification of laccase isozymes and functional insight from Trametes hirsuta. Front Microbiol 10:152. https://doi.org/10.3389/fmicb.2019.00152
Article
Google Scholar
Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127(1):1–22. https://doi.org/10.1007/s10342-007-0182-6
Article
Google Scholar
Marcot BG (2017) A review of the role of fungi in wood decay of forest ecosystems. Res Note 575:1–31. https://doi.org/10.2737/PNW-RN-575
Article
Google Scholar
Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Industrial Applications, 2nd edn. Springer, Berlin
Google Scholar
Fisher AB, Fong SS (2014) Lignin biodegradation and industrial implications. AIMS Bioeng 1(2):92–112. https://doi.org/10.3934/bioeng.2014.2.92
Article
Google Scholar
Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 31:1–31. https://doi.org/10.1155/2014/463074
Article
Google Scholar
Farahi RH, Charrier AM, Tolbert A, Lereu AL, Ragauskas A, Davison BH, Passian A (2017) Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy. Sci Rep 7(1):152. https://doi.org/10.1038/s41598-017-00234-4
Article
Google Scholar
Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT (2018) Marsilea spp. A novel source of lignocellulosic biomass: effect of solubilized lignin on anaerobic biodegradability and cost of energy products. Bioresour Technol 255:220–228. https://doi.org/10.1016/j.biortech.2018.01.103
Article
Google Scholar
Den W, Sharma VK, Lee M, Nadadur G, Varma RS (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front Chem 6:141. https://doi.org/10.3389/fchem.2018.00141
Article
Google Scholar
Cao Z, Dierks M, Clough MT, Daltro de Castro IB, Rinaldi R (2018) A convergent approach for a deep converting lignin-first biorefinery rendering high-energy density drop-in fuels. Joule 2(6):1118–1133. https://doi.org/10.1016/j.joule.2018.03.012
Article
Google Scholar
Li X, Xi P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26. https://doi.org/10.1016/j.jhazmat.2007.04.040
Article
Google Scholar
Jaouadi B, Rekik H, Badis A, Zaraî Jaouadi N, Belhoul M, Hmidi M, Kourdali S, Fodil D, Bejar S (2014) Production, purification, and characterization of a highly thermostable and humic acid biodegrading peroxidase from a decolorizing Streptomyces albidoflavus strain TN644 isolated from a Tunisian off-shore oil field. Int Biodeterior Biodegrad 90:36–44. https://doi.org/10.1016/j.ibiod.2014.02.001
Article
Google Scholar
Wang SS, Ning YJ, Wang SN, Zhang J, Zhang GQ, Chen QJ (2017) Purification, characterization and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. Int J Biol Macromol 95:920–927. https://doi.org/10.1016/j.ijbiomac.2016.10.079
Article
Google Scholar
Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y (2011) Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol 45(16):6800–6805. https://doi.org/10.1021/es200298t
Article
Google Scholar
Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28. https://doi.org/10.1016/B978-0-12-407679-2.00001-6
Article
Google Scholar
Alam MZ, Mansor MF, Jalal KC (2009) Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor. J Ind Microbiol Biotechnol 36(5):757–764. https://doi.org/10.1007/s10295-009-0548-5
Article
Google Scholar
Coconi-Linares N, Magana-Ortiz D, Guzman-Ortiz DA, Fernandez F, Loske AM, Gomez-Lim MA (2014) High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98(22):9283–9294. https://doi.org/10.1007/s00253-014-6105-9
Article
Google Scholar
Zhang H, Zhang S, He F, Qin X, Zhang X, Yang Y (2016) Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J Hazard Mater 320:265–277. https://doi.org/10.1016/j.jhazmat.2016.07.065
Article
Google Scholar
Kong W, Chen H, Lyu S, Ma F, Yu H, Zhang X (2016) Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538 and its use for the degradation of lignin-related compounds. Process Biochem 51(11):1776–1783. https://doi.org/10.1016/j.procbio.2016.01.007
Article
Google Scholar
Bouacem K, Rekik H, Zarai Jaouadi N, Zenati B, Kourdali S, El Hattab M, Badis A, Annane R, Bejar S, Hacene H, Bouanane-Darenfed A, Jaouadi B (2018) Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int J Biol Macromol 106:636–646. https://doi.org/10.1016/j.ijbiomac.2017.08.061
Article
Google Scholar
Vasina DV, Mustafa ON, Moiseenko KV, Sadovskaya NS, Glazunova OA, Tyurin АА, Fedorova TV, Pavlov AR, Tyazhelova TV, Goldenkova IV, Koroleva OV (2015) The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction. Biochimie 116:154–164. https://doi.org/10.1016/j.biochi.2015.07.015
Article
Google Scholar
Marco-Urrea E, Perez-Trujillo M, Cruz-Morato C, Caminal G, Vicent T (2010) White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR. Chemosphere 78(4):474–481. https://doi.org/10.1016/j.chemosphere.2009.10.009
Article
Google Scholar
Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. BioresourTechnol 101:2331–2350. https://doi.org/10.1016/j.biortech.2009.10.087
Article
Google Scholar
Wang X, Bandyopadhyay S, Xuan Z, Zhao X, Zhang MQ, Zhang X (2007) Prediction of transcription start sites based on feature selection using AMOSA. Comput Syst Bioinform Conf 6:183–193. https://doi.org/10.1142/9781860948732_0021
Article
Google Scholar
Samuel B, Dinka H (2020) In silico analysis of the promoter region of olfactory receptors in cattle (Bosindicus) to understand its gene regulation. Nucleosides Nucleotides Nucleic Acids 39(6):1–13. https://doi.org/10.1080/15257770.2020.1711524
Article
Google Scholar
Du X, Leng H, An-Yuan G, Zhongming Z (2012) Features of methylation and gene expression in the promoter-associated CpG islands using human methylome data. Comp Funct Genomics:1–8. https://doi.org/10.1155/2012/598987
Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, Wang LY, Gerstein M, Snyder M (2007) Divergence of Transcription factor binding sites across related yeast species. Science 317(5839):815–819. https://doi.org/10.1126/science.1140748
Article
Google Scholar
Halford ES, Marko JF (2004) How do site-specific DNA-binding proteins find their targets. Nucleic Acids Res 32(10):3040–3052. https://doi.org/10.1093/nar/gkh624
Article
Google Scholar
Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18(3):676–687. https://doi.org/10.1105/tpc.105.038240
Article
Google Scholar
Gupta D, Ranjan R (2017) In silico comparative analysis of promoters derived from plant pararetroviruses. Virus Disease 28(4):416–421. https://doi.org/10.1007/s13337-017-0410-8
Article
Google Scholar
Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13(4):233–245. https://doi.org/10.1038/nrg3163
Article
Google Scholar
Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26(1):51–56. https://doi.org/10.1016/s0097-8485(01)00099-7
Article
Google Scholar
Yirgu M, Kebede M (2019) Analysis of the promoter region, motif and CpG islands in AraC family transcriptional regulator ACP92 genes of Herbaspirillum seropedicae. Adv Biosci Biotechnol 10(6):150–164. https://doi.org/10.4236/abb.2019.106011
Article
Google Scholar
Dinka H, Milkesa A (2020) Unfolding SARS-CoV-2 viral genome to understand its gene expression regulation. Infection. Genet Evol 84:1567–1348. https://doi.org/10.1016/j.meegid.2020.104386
Article
Google Scholar
Bailey LT, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36
Google Scholar
Gupta S, Stamatoyannopolous JA, Timothy B, William SN (2007) Quantifying similarity between motifs. Genome Biol 8(2):24. https://doi.org/10.1186/gb-2007-8-2-r24
Article
Google Scholar
Bailey LT, Mikael B, Fabian AB, Martin F, Charles EG, Luca C, Jingyuan R, Wilfred WL, William SN (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(2):202–208. https://doi.org/10.1093/nar/gkp335
Article
Google Scholar
Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745. https://doi.org/10.1073/pnas.052410099
Article
Google Scholar
Takamiya T, Hosobuchi S, Asai K, Nakamura E, Tomioka K, Kawase M, Kakutani T, Paterson AH, Murakami Y, Okuizumi H (2006) Restriction landmark genome scanning method using isoschizomers (MspI/HpaI) for DNA methylation analysis. Electrophoresis 27(14):2846–2856. https://doi.org/10.1002/elps.200500776
Article
Google Scholar
Roni V, Carpio R, Wissinger B (2007) Mapping of transcription start sites of human retina expressed genes. BMC Genomics 8(1):42. https://doi.org/10.1186/1471-2164-8-42
Article
Google Scholar
Dinka H, Minh TL (2018) Analysis of pig vomeronasal receptor type1 (V1R) promoter region reveals a common promoter motif but poor CpG islands. Anim Biotechnol 29(4):293–300. https://doi.org/10.1080/10495398.2017.1383915
Article
Google Scholar
Chen SH, Zhou S, Tan J, Schachter H (1998) Transcriptional regulation of the human UDP-GlcNAc: alpha-6-D-mannoside beta-1-2-N-acetylglucosaminyltransferase II gene (MGAT2) which controls complex N-glycan synthesis. Glycoconj J 15(3):301–308. https://doi.org/10.1023/a:1006957331273
Article
Google Scholar
Loewen CJR, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304(5677):1644–1647. https://doi.org/10.1126/science.1096083
Article
Google Scholar
Sharif J, Endo TA, Toyoda T, Koseki H (2010) Divergence of CpG island promoters: a consequence or cause of evolution. Develop Growth Differ 52(6):545–554. https://doi.org/10.1111/j.1440-169X.2010.01193.x
Article
Google Scholar