Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308. https://doi.org/10.1073/pnas.0912953109
Article
Google Scholar
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. https://doi.org/10.1038/nature01014
Article
Google Scholar
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot 68(12):3129–3143. https://doi.org/10.1093/jxb/erx142
Article
Google Scholar
Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3(2):138–147. https://doi.org/10.1007/s12284-010-9048-5
Article
Google Scholar
Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806. https://doi.org/10.1126/science.270.5243.1804
Article
Google Scholar
Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914. https://doi.org/10.1534/genetics.105.044891
Article
Google Scholar
Ji H, Kim SR, Kim YH, Suh JP, Park HM, Sreenivasulu N, Misra G, Kim SM, Hechanova SL, Kim H, Lee GS, Yoon UH, Kim TH, Lim H, Suh SC, Yang J, An G, Jena KK (2016) Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep 6(1):34376. https://doi.org/10.1038/srep34376
Article
Google Scholar
Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487
Google Scholar
Li JY, Wang J, Zeigler RS (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience 3(1):2047–217X
Google Scholar
Yonemaru J, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M (2010) Q-TARO: QTL annotation rice online database. Rice 3(2-3):194–203. https://doi.org/10.1007/s12284-010-9041-z
Article
Google Scholar
Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263(4):681–689. https://doi.org/10.1007/s004380051217
Article
Google Scholar
Mohler V, Singrün C (2004) General considerations: marker-assisted selection. In: Molecular marker systems in plant breeding and crop improvement. Springer, Berlin, Heidelberg, pp 305–317
Google Scholar
Yang HB, Kang WH, Nahm SH, Kang BC (2015) Methods for developing molecular markers. In: Current technologies in plant molecular breeding. Springer, Dordrecht, pp 15–50
Google Scholar
Madhumati B (2014) Potential and application of molecular markers techniques for plant genome analysis. Int J Pure App Biosci 2(1):169–188
Google Scholar
Freeland JR (2017) The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60(4):358–374. https://doi.org/10.1139/gen-2016-0100
Article
Google Scholar
Park J, Suh Y, Kim S (2020) A complete chloroplast genome sequence of Gastrodia elata (Orchidaceae) represents high sequence variation in the species. Mitochondrial DNA B 5(1):517–519. https://doi.org/10.1080/23802359.2019.1710588
Article
Google Scholar
Ashkani S, Rafii M, Sariah M, Akmar AS, Rusli I, Rahim HA, Latif M (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10(3):1345–1355. https://doi.org/10.4238/vol10-3gmr1331
Article
Google Scholar
Shanti ML, Shenoy VV, Devi GL, Kumar VM, Premalatha P, Kumar GN, Shashidhar HE, Zehr UB, Freeman WH (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol 92(2):495–501
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379
Article
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7(5):e37135. https://doi.org/10.1371/journal.pone.0037135
Article
Google Scholar
Bourgeois Y, Boissinot S (2019) On the population dynamics of junk: A review on the Population Genomics of Transposable Elements. Genes 10(6):419. https://doi.org/10.3390/genes10060419
Article
Google Scholar
Gao B, Shen D, Xue S, Chen C, Cui H, Song C (2016) The contribution of transposable elements to size variations between four teleost genomes. Mob DNA 7(1):4. https://doi.org/10.1186/s13100-016-0059-7
Article
Google Scholar
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37(9):997–1002. https://doi.org/10.1038/ng1615
Article
Google Scholar
Negi P, Rai AN, Suprasanna P (2016) Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front Plant Sci 7:1448
Google Scholar
Roy NS, Choi JY, Lee SI, Kim NS (2015) Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genom 37(2):141–151. https://doi.org/10.1007/s13258-014-0252-3
Article
Google Scholar
Fan F, Cui B, Zhang T, Ding G, Wen X (2014) LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Pinus massoniana). Tree Genet Genomes 10(1):213–222. https://doi.org/10.1007/s11295-013-0677-x
Article
Google Scholar
Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631
Article
Google Scholar
Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon-based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10(1):44. https://doi.org/10.1186/1471-2148-10-44
Article
Google Scholar
Wenke T, Seibt KM, Döbel T, Muders K, Schmidt T (2015) Inter-SINE amplified polymorphism (ISAP) for rapid and robust plant genotyping. In: Plant Genotyping. Humana Press, New York, pp 183–192
Chapter
Google Scholar
Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2
Article
Google Scholar
Monden Y, Fujii N, Yamaguchi K, Ikeo K, Nakazawa Y, Waki T, Tahara M (2014) Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site. Genome 57(5):245–252. https://doi.org/10.1139/gen-2014-0031
Article
Google Scholar
Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23(9):833–844. https://doi.org/10.1016/j.tplants.2018.06.004
Article
Google Scholar
Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14(1):8. https://doi.org/10.1186/s12915-016-0228-7
Article
Google Scholar
Saijo Y, Loo EPI, Yasuda S (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93(4):592–613. https://doi.org/10.1111/tpj.13808
Article
Google Scholar
Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39(1):79–102. https://doi.org/10.1146/annurev.phyto.39.1.79
Article
Google Scholar
Tian YP, Valkonen JP (2012) Mapping of the avirulence determinant of Potato virus Y strain O corresponding to the gene Ny for hypersensitive resistance in potato. Mol Plant-Microbe Interact 26(3):297–305
Article
Google Scholar
Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93(7):881–890. https://doi.org/10.1094/PHYTO.2003.93.7.881
Article
Google Scholar
Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99(3-4):554–560. https://doi.org/10.1007/s001220051268
Article
Google Scholar
Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104(8):1317–1324. https://doi.org/10.1007/s00122-002-0879-3
Article
Google Scholar
Chague V, Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Roder ME, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42(6):1050–1056. https://doi.org/10.1139/g99-064
Article
Google Scholar
Jeon J-S, Chen D, Yi G-H, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Gen Genomics 269(2):280–289. https://doi.org/10.1007/s00438-003-0834-2
Article
Google Scholar
Sardesai N, Kumar A, Rajyashri KR, Nair S, Mohan M (2002) Identification of an AFLP marker linked to Gm7, a gall midge resistance gene and its conversion to a SCAR marker for its utility in marker aided selection in rice. Theor Appl Genet 105(5):691–698. https://doi.org/10.1007/s00122-002-1035-9
Article
Google Scholar
Dussle CM, Quint M, Xu ML, Melchinger AE, Lübberstedt T (2002) Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR based markers. Theor Appl Genet 105(8):1190–1195. https://doi.org/10.1007/s00122-002-0964-7
Article
Google Scholar
Graner A, Streng S, Kellermann A, Schiemann A, Baner E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. Theor Appl Genet 98(2):285–290. https://doi.org/10.1007/s001220051070
Article
Google Scholar
Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54(12):1065–1079. https://doi.org/10.1071/AR02219
Article
Google Scholar
Graner A, Streng S, Drescher A, Jin Y, Borovkova I, Steffenson B (2000) Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant Breed 119(5):389–392. https://doi.org/10.1046/j.1439-0523.2000.00528.x
Article
Google Scholar
Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene targeted and functional markers: a review. Plant Methods 9(1):6. https://doi.org/10.1186/1746-4811-9-6
Article
Google Scholar
Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29(4):233–240. https://doi.org/10.1016/j.tig.2012.10.011
Article
Google Scholar
Singh RB, Srivastava S, Rastogi J, Gupta GN, Tiwari NN, Singh B, Singh RK (2014) Molecular markers exploited in crop improvement practices. Res Environ Life Sci 7(4):223–232
Google Scholar
Gui Y, Yan G, Bo S, Tong Z, Wang Y, Xiao B, Lu X, Li Y, Wu W, Fan L (2011) iSNAP: a small RNA-based molecular marker technique. Plant Breed 130(5):515–520. https://doi.org/10.1111/j.1439-0523.2011.01872.x
Article
Google Scholar
Zhu Q-H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18(9):1456–1465. https://doi.org/10.1101/gr.075572.107
Article
Google Scholar
Varshney RK, Mahendar T, Aggarwal RK, Börner A (2007) Genic molecular markers in plants: development and applications. In: Genomics-assisted crop improvement. Springer, Dordrecht, pp 13–29
Chapter
Google Scholar
Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Cook DR (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30(3):639–651. https://doi.org/10.1016/j.biotechadv.2011.11.001
Article
Google Scholar
Schoenfelder S, Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20(8):437–455. https://doi.org/10.1038/s41576-019-0128-0
Article
Google Scholar
Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117. https://doi.org/10.1093/nar/gkg041
Article
Google Scholar
Haberle V, Stark A (2018) Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19(10):621–637. https://doi.org/10.1038/s41580-018-0028-8
Article
Google Scholar
Desmarais E, Lanneluc I, Lagnel J (1998) Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Res 26(6):1458–1465. https://doi.org/10.1093/nar/26.6.1458
Article
Google Scholar
Chung YS, Choi SC, Jun TH, Kim C (2017) Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58(5):425–431. https://doi.org/10.1007/s13580-017-0297-8
Article
Google Scholar
Hu J, Vick BBA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21(3):289–294. https://doi.org/10.1007/BF02772804
Article
Google Scholar
Vaseeharan B, Rajakamaran P, Jayaseelan D, Vincent AY (2013) Molecular markers and their application in genetic diversity of penaeid shrimp. Aquac Int 21(2):219–241. https://doi.org/10.1007/s10499-012-9582-9
Article
Google Scholar
Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27(1):86–93. https://doi.org/10.1007/s11105-008-0060-5
Article
Google Scholar
Gorji AM, Matyas KK, Dublecz Z, Decsi K, Cernak I, Hoffmann B, Taller J, Polgar Z (2012) In vitro osmotic stress tolerance in potato and identification of major QTLs. Am J Potato Res 89(6):453–464. https://doi.org/10.1007/s12230-012-9268-x
Article
Google Scholar
Gorji AM, Poczai P, Polgar Z, Taller J (2011) Efficiency of Arbitrarily Amplified Dominant Markers (SCOT, ISSR and RAPD) for Diagnostic Fingerprinting in Tetraploid Potato. Am J Potato Res 88(3):226–237. https://doi.org/10.1007/s12230-011-9187-2
Article
Google Scholar
Wang Q, Zhang B, Lu Q (2008) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Report 27:139–143
Article
Google Scholar
Koebner RM, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21(2):59–63. https://doi.org/10.1016/S0167-7799(02)00036-7
Article
Google Scholar
Dar SH, Hussain W, Sanghera GS (2013) Advances in hybrid rice technology through applications of novel technologies. Crop Improvement: An Integrated Approach. MD Publications Pvt Ltd, New Delhi, pp 61–67
Google Scholar
Bidhendi MZ, Choukan R, Darvish F, Mostafavi K, Majidi E (2012) Classifying of maize inbred lines into heterotic groups using diallel analysis. Environments 7:2252–2250
Google Scholar
Boeven PH, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129(6):1231–1245. https://doi.org/10.1007/s00122-016-2699-x
Article
Google Scholar
Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221. https://doi.org/10.1007/s00122-005-0110-4
Article
Google Scholar
Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics 15(1):397
Article
Google Scholar
Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123(2):251–260. https://doi.org/10.1007/s00122-011-1581-0
Article
Google Scholar
Xu Y, McCouch SR, Zhang Q (2005) How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59(1):7–26. https://doi.org/10.1007/s11103-004-4681-2
Article
Google Scholar
Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H (2017) Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol 42(3):165–174. https://doi.org/10.1007/s40858-017-0127-7
Article
Google Scholar
Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136(2):303–310. https://doi.org/10.1007/s10709-008-9307-1
Article
Google Scholar
Dwivedi N, Kumar R, Paliwal R, Kumar U, Kumar S, Singh M, Singh RK (2015) QTL mapping for important horticultural traits in pepper (Capsicum annuum L.). J Plant Biochem Biotechnol 24(2):154–160. https://doi.org/10.1007/s13562-013-0247-1
Article
Google Scholar
Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48(4):1266–1276. https://doi.org/10.2135/cropsci2008.02.0082
Article
Google Scholar
Kumar S, Rao M (2014) Conventional and molecular breeding for bacterial leaf blight and blast resistance in rice. Res Rev J Ecol 3:1–3
Google Scholar
Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122(1):52–56. https://doi.org/10.1046/j.1439-0523.2003.00752.x
Article
Google Scholar
van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL– NILs for barley leaf rust resistance. Mol Breed 8(3):187–195. https://doi.org/10.1023/A:1013722008561
Article
Google Scholar
Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96(1):123–131. https://doi.org/10.1007/s001220050718
Article
Google Scholar
Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14(4):463–473. https://doi.org/10.1007/s11032-004-0903-1
Article
Google Scholar
Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, González-de-León D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42(5):1516–1528. https://doi.org/10.2135/cropsci2002.1516
Article
Google Scholar
Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162(4):1945–1959. https://doi.org/10.1093/genetics/162.4.1945
Article
Google Scholar
Chen S, Lin XH, Xu CG, Zhang QF (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular markerassisted selection. Crop Sci 40(1):239–244. https://doi.org/10.2135/cropsci2000.401239x
Article
Google Scholar
Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120(2):133–137. https://doi.org/10.1046/j.1439-0523.2001.00559.x
Article
Google Scholar
Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40(3):792–797. https://doi.org/10.2135/cropsci2000.403792x
Article
Google Scholar
Liu SX, Anderson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43(3):760–766. https://doi.org/10.2135/cropsci2003.7600
Article
Google Scholar
Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103(1):75–83. https://doi.org/10.1007/s001220100538
Article
Google Scholar
Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod Sci 8(3):330–333. https://doi.org/10.1626/pps.8.330
Article
Google Scholar
Zhou RH, Zhu ZD, Kong XY, Huo NX, Tian QZ, Li P, Jin CY, Dong YC, Jia JZ (2005) Development of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet 110(4):640–648. https://doi.org/10.1007/s00122-004-1889-0
Article
Google Scholar
Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci 47:S-216
Article
Google Scholar
Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems, and prospects. Adv Agron 95:163–318. https://doi.org/10.1016/S0065-2113(07)95003-8
Article
Google Scholar
Ji Z, Shi J, Zeng Y, Qian Q, Yang C (2014) Application of a simplified marker-assisted backcross technique for hybrid breeding in rice. Biologia 69(4):463–468. https://doi.org/10.2478/s11756-014-0335-2
Article
Google Scholar
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. IJMS 14(11):22499–22528. https://doi.org/10.3390/ijms141122499
Article
Google Scholar
Okada Y, Kanatani R, Arai S, Ito K (2004) Interaction between barley yellow mosaic disease-resistance genes rym1 and rym5, in the response to BaYMV strains. Breed Sci 54(4):319–325. https://doi.org/10.1270/jsbbs.54.319
Article
Google Scholar
Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55. https://doi.org/10.1007/s11032-005-3445-2
Article
Google Scholar
Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107(5):922–930. https://doi.org/10.1007/s00122-003-1329-6
Article
Google Scholar
Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320. https://doi.org/10.1007/s001220050565
Article
Google Scholar
Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106(1):1–8. https://doi.org/10.1007/s00122-002-1014-1
Article
Google Scholar
Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128. https://doi.org/10.1007/s001220051395
Article
Google Scholar
Sharma PN, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Sta°l) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140(1):61–69. https://doi.org/10.1111/j.1601-5223.2004.01726.x
Article
Google Scholar
Jiang GH, Xu CG, Tu JM, Li XH, He YQ, Zhang QF (2004) Pyramiding of insect- and diseaseresistance genes into an elite indica, cytoplasm male sterile restorer line of rice, ‘Minghui 63’. Plant Breed 123(2):112–116. https://doi.org/10.1046/j.1439-0523.2003.00917.x
Article
Google Scholar
Liu SP, Li X, Wang CY, Li XH, He YQ (2003) Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Acta Bot Sin 45:1346–1350
Google Scholar
Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560. https://doi.org/10.1016/j.tplants.2003.09.010
Article
Google Scholar
Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152(1):109–116. https://doi.org/10.1007/s10681-006-9184-6
Article
Google Scholar
Liu Y, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: Current status and future prospects. Theor Appl Genet 125(1):1–10. https://doi.org/10.1007/s00122-012-1829-3
Article
Google Scholar
Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (T. aestivum L.). Theor Appl Genet 122(1):211–223. https://doi.org/10.1007/s00122-010-1437-z
Article
Google Scholar
Andeden E, Yediay F, Baloch F, Shaaf S, Kilian B, Nachit M, Ozkan H (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39(3):352–364. https://doi.org/10.1556/CRC.39.2011.3.5
Article
Google Scholar
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R (2012) Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genom 12(4):573–583. https://doi.org/10.1007/s10142-012-0300-5
Article
Google Scholar
Zhao XL, Ma EW, Gale EKR, Lei ZS, He ZH, Sun QX, Xia XC (2007) Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed 20(3):223–231. https://doi.org/10.1007/s11032-007-9085-y
Article
Google Scholar
He X, Zhang Y, He Z, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116(2):213–221. https://doi.org/10.1007/s00122-007-0660-8
Article
Google Scholar
Geng H, Xia X, Zhang L, Qu Y, He Z (2012) Development of functional markers for Lipoxygenase gene Talox-B1 on chromosome 4 BS in common wheat. Crop Sci 52(2):568–576. https://doi.org/10.2135/cropsci2011.07.0365
Article
Google Scholar
Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114(1):165–175. https://doi.org/10.1007/s00122-006-0420-1
Article
Google Scholar
Periyannan S, Bansal U, Bariana H, Deal K, Luo M, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 127(4):947–955. https://doi.org/10.1007/s00122-014-2270-6
Article
Google Scholar
Huseynova IM (2018) Application of PCR-based functional markers for identification of DREB1 genes in Triticum aestivum L. SF Biotechnol Bioeng J 1:1
Google Scholar
Wang J, Nakazaki T, Chen S, Chen W, Saito H, Tsukiyama T, Okumoto Y, Xu Z, Tanisaka T (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119(1):85–91. https://doi.org/10.1007/s00122-009-1019-0
Article
Google Scholar
Xin YY, Hong LY, Fei TJ, Qasim SM, Zhi-Xiong C, Lan W, Jin-Quan L, Xiang-Dong L, Yong-Gen L (2012) Wide-compatibility gene S5n exploited by functional molecular markers and its effect on fertility of intersubspecific rice hybrids. Crop Sci 52(2):669–675. https://doi.org/10.2135/cropsci2011.04.0232
Article
Google Scholar
Qi Y, Wang L, Gui J, Zhang L, Liu Q, Wang J (2017) Development and validation of a functional co-dominant SNP marker for the photoperiod thermo-sensitive genic male sterility pms3 (p/tms12-1) gene in rice. Breed Sci 67(5):535–539. https://doi.org/10.1270/jsbbs.16138
Article
Google Scholar
Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22(2):185–192. https://doi.org/10.1007/s11032-008-9165-7
Article
Google Scholar
Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed 21:49–65
Article
Google Scholar
Chen T, Meng-xiang T, Zhang Y, Zhu Z, Zhao L, Zhao Q, Lin J, Zhou L, Wang C (2010) Development of simple functional markers for low glutelin content gene 1 (Lgc1) in rice (Oryza sativa). Rice Sci 17(3):173–178. https://doi.org/10.1016/S1672-6308(09)60014-7
Article
Google Scholar
Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508(2):233–240. https://doi.org/10.1016/j.gene.2012.07.054
Article
Google Scholar
Zhou L, Chen S, Yang G, Zha W, Cai H, Li S, Chen Z, Liu K, Xu H, You A (2018) A perfect functional marker for the gene of intermediate amylose content Wx-in in rice (Oryza sativa L.). Crop Breed Appl Biotechnol 18(1):103–109. https://doi.org/10.1590/1984-70332018v18n1a14
Article
Google Scholar
Hur YJ, Jeung J, Kim SY, Park H, Cho J, Lee JY, Sohan Y, Song YC, Park D, Lee C et al (2013) Functional markers for bacterial blight resistance gene Xa3 in rice. Mol Breed 31(4):981–985. https://doi.org/10.1007/s11032-012-9831-7
Article
Google Scholar
Zhou L, Chen Z, Lang X, Du B, Liu K, Yang G, Hu G, Li S, He G, You A (2013) Development and validation of a PCR-based functional marker system for the brown planthopper resistance gene Bph14 in rice. Breed Sci 63(3):347–352. https://doi.org/10.1270/jsbbs.63.347
Article
Google Scholar
Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H (2010) Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet 121(7):1357–1367. https://doi.org/10.1007/s00122-010-1393-7
Article
Google Scholar
Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM et al (2007) A marker-assisted backcross approach for developing submergence tolerant rice cultivars. Theor Appl Genet 115(6):767–776. https://doi.org/10.1007/s00122-007-0607-0
Article
Google Scholar
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156(3):1202–1216. https://doi.org/10.1104/pp.111.175471
Article
Google Scholar
Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 Confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993. https://doi.org/10.3389/fpls.2017.00993
Article
Google Scholar
Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346. https://doi.org/10.1093/genetics/141.1.333
Article
Google Scholar
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289. https://doi.org/10.1038/90135
Article
Google Scholar
Chai Y, Hao X, Yang X, Allen WB, Li J, Yan J, Shen B, Li J (2012) Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed 29(4):939–949. https://doi.org/10.1007/s11032-011-9644-0
Article
Google Scholar
Lubberstedt T, Zein I, Andersen J, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146(1-2):101–108. https://doi.org/10.1007/s10681-005-0892-0
Article
Google Scholar
Zhou Y, Han Y, Li Z, Fu Y, Fu Z, Xu S, Li J, Yan J, Jang X (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of a-carotene in maize kernel. J Integr Plant Biol 54(4):260–269. https://doi.org/10.1111/j.1744-7909.2012.01106.x
Article
Google Scholar
Chhabra R, Hossain F, Muthusamy V, Baveja A, Mehta BK, Zunjare RU (2019) Development and validation of breeder-friendly functional markers of sugary1 gene encoding starch-debranching enzyme affecting kernel sweetness in maize (Zea mays). Crop Pasture Sci 70(10):868–875. https://doi.org/10.1071/CP19298
Article
Google Scholar
Assenov B, Andjelkovic V, Ignjatovic-Micic D, Pagnotta MA (2013) Identification of SNP mutations in MYBF-1 gene involved in drought stress tolerance in maize. Bulg J Agric Sci 19:181–185
Google Scholar
Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Phd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161(2):825–834. https://doi.org/10.1093/genetics/161.2.825
Article
Google Scholar
Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273(1):54–65. https://doi.org/10.1007/s00438-004-1095-4
Article
Google Scholar
Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M (2003) Barley disease resistance gene analogs of the NBSLRR class: Identification and mapping. Mol Genet Genomics 269(1):150–161. https://doi.org/10.1007/s00438-003-0823-5
Article
Google Scholar
Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low copy DNA interrupts the micro-collinearity between rice and barley at the Rph7 locus. Genetics 164(2):673–683. https://doi.org/10.1093/genetics/164.2.673
Article
Google Scholar
McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442. https://doi.org/10.1104/pp.123.2.439
Article
Google Scholar
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING – a shortcut in functional genomics. J Appl Genet 52(4):371–390. https://doi.org/10.1007/s13353-011-0061-1
Article
Google Scholar
Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45(4):684–694. https://doi.org/10.1111/j.1365-313X.2006.02670.x
Article
Google Scholar
Gupta PK, Sonwane AA, Singh NK, Meshram CD, Dahiya SS, Pawar SS, Gupta SP, Chaturvedi VK, Saini M (2012) Intracerebral delivery of small interfering RNAs (siRNAs) using adenoviral vector protects mice against lethal peripheral rabies challenge. Virus Res 163(1):11–18. https://doi.org/10.1016/j.virusres.2011.08.004
Article
Google Scholar
Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22(21):5690–5699. https://doi.org/10.1093/emboj/cdg546
Article
Google Scholar
Guo L, Lu Z (2010) Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem 34(3):165–171. https://doi.org/10.1016/j.compbiolchem.2010.06.001
Article
Google Scholar
Lee SC, Choi DS, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73(4-5):409–424. https://doi.org/10.1007/s11103-010-9629-0
Article
Google Scholar
Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235(6):1369–1382. https://doi.org/10.1007/s00425-011-1580-z
Article
Google Scholar
Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114
Article
Google Scholar
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647
Article
Google Scholar
Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19(5):284–287. https://doi.org/10.1016/j.tplants.2014.02.014
Article
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
Article
Google Scholar
Niewoehner O, Jinek M, Doudna JA (2013) Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res 42(2):1341–1353. https://doi.org/10.1093/nar/gkt922
Article
Google Scholar
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR– Cas systems. Nat Rev Microbiol 9(6):467–477. https://doi.org/10.1038/nrmicro2577
Article
Google Scholar
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
Article
Google Scholar
Ali Z, Eid A, Ali S, Mahfouz MM (2018) Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res 244:333–337. https://doi.org/10.1016/j.virusres.2017.10.009
Article
Google Scholar
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793
Article
Google Scholar
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, highefficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007
Article
Google Scholar
Zargar SM, Raatz B, Sonah H, Bhat JA, Dar ZA, Agrawal GK, Rakwal R (2015) Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. J Crop Sci Biotechnol 18(5):293–308. https://doi.org/10.1007/s12892-015-0037-5
Article
Google Scholar
Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631. https://doi.org/10.1038/nature08800
Article
Google Scholar
Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. https://doi.org/10.1038/ng.695
Article
Google Scholar
Chia JM, Song C, Bradbury PJ, Costich D, De Leon N, Doebley J, Hufford MB, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807. https://doi.org/10.1038/ng.2313
Article
Google Scholar
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957–961. https://doi.org/10.1038/ng.2673
Article
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162. https://doi.org/10.1038/ng.746
Article
Google Scholar
Zhao J, Perez M, Hu J, Salas FMG (2016) Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome 9(2):1–14
Article
Google Scholar
Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39. https://doi.org/10.1038/ng.1018
Article
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718. https://doi.org/10.1126/science.1174276
Article
Google Scholar
Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168. https://doi.org/10.1038/ng.747
Article
Google Scholar
Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131(7):1405–1422. https://doi.org/10.1007/s00122-018-3086-6
Article
Google Scholar
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50. https://doi.org/10.1038/ng.2484
Article
Google Scholar
Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505. https://doi.org/10.1111/tpj.12294
Article
Google Scholar
Turner EH, Ng SB, Nickerson DA, Shendure J (2009) Methods for genomic partitioning. Annu Rev Genomics Hum Genet 10(1):263–284. https://doi.org/10.1146/annurev-genom-082908-150112
Article
Google Scholar
Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7(12):1009–1015. https://doi.org/10.1038/nmeth.1528
Article
Google Scholar
Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756. https://doi.org/10.1093/genetics/124.3.743
Article
Google Scholar
Yin X, Stam P, Kropff MJ, Schapendonk AHCM (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95(1):90–98. https://doi.org/10.2134/agronj2003.0090
Article
Google Scholar
Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Thero Appl Genet 92(2):191–203. https://doi.org/10.1007/BF00223376
Article
Google Scholar
Verbyla AP, Eckermann PJ, Thompson R, Cullis BR (2003) The analysis of quantitative trait loci in multi-environment trials using a multiplicative mixed model. Aust J Agric Res 54(12):1395–1408. https://doi.org/10.1071/AR02239
Article
Google Scholar
Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432. https://doi.org/10.1007/s00122-003-1373-2
Article
Google Scholar
Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133(3):1083–1090. https://doi.org/10.1104/pp.103.027607
Article
Google Scholar
Stuber CW, Polacco M, Lynn M (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583. https://doi.org/10.2135/cropsci1999.3961571x
Article
Google Scholar
Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theor Appl Genet 108(4):670–680. https://doi.org/10.1007/s00122-003-1468-9
Article
Google Scholar
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106. https://doi.org/10.1126/science.280.5360.104
Article
Google Scholar
Tóth B, Francia E, Rizza F, Stanca AM, Galiba G, Pecchioni N (2004) Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Mol Breed 14(3):265–273. https://doi.org/10.1023/B:MOLB.0000047774.01769.e6
Article
Google Scholar
Abe A, Takagi H, Fujibe T, Aya K, Kojima M, Sakakibara H, Terauchi R (2012) OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor Appl Genet 125(4):647–657. https://doi.org/10.1007/s00122-012-1857-z
Article
Google Scholar
Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109(3):515–522. https://doi.org/10.1007/s00122-004-1667-z
Article
Google Scholar
Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36(3):771–777. https://doi.org/10.2135/cropsci1996.0011183X003600030040x
Article
Google Scholar
Miftahudin CT, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110(5):906–913. https://doi.org/10.1007/s00122-004-1909-0
Article
Google Scholar
Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Gen Genomics 266(5):821–826. https://doi.org/10.1007/s00438-001-0599-4
Article
Google Scholar
Zhou P, Tan Y, He Y, Xu C, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106(2):326–331. https://doi.org/10.1007/s00122-002-1023-0
Article
Google Scholar
Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134(1):51–60. https://doi.org/10.1023/A:1026191918704
Article
Google Scholar
Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breed 12(1):51–59. https://doi.org/10.1023/A:1025484523771
Article
Google Scholar
Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485. https://doi.org/10.1007/s11103-005-0257-z
Article
Google Scholar
Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JD, Upadhyaya HD, Gothalwal R, Kilian A, Varshney RK (2011) The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 90(1):103–109. https://doi.org/10.1007/s12041-011-0050-5
Article
Google Scholar
McKay JR, Latta RG (2002) Adaptive divergence population: markers, QTLs and traits. Trends Ecol Evol 17(6):285–291. https://doi.org/10.1016/S0169-5347(02)02478-3
Article
Google Scholar
Bernatsky R, Tanksley S (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genet 112(4):887–898. https://doi.org/10.1093/genetics/112.4.887
Article
Google Scholar
Frisch M, Bohn M, Melchinger TE (1999) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39(4):967–975. https://doi.org/10.2135/cropsci1999.0011183X003900040003x
Article
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829. https://doi.org/10.1093/genetics/157.4.1819
Article
Google Scholar
Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170(2):909–917. https://doi.org/10.1534/genetics.104.035451
Article
Google Scholar
Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122(8):1577–1589. https://doi.org/10.1007/s00122-011-1556-1
Article
Google Scholar