Ansari SH, Shamsi TS, Ashraf M, Perveen K, Farzana T, Bohray M, Erum S, Mehboob T (2011) Efficacy of hydroxyurea in providing transfusion independence in β-thalassemia. J Pediatr Hematol Oncol 33(5):339–343. https://doi.org/10.1097/MPH.0b013e31821b0770
Article
Google Scholar
Aron DC (1992) Insulin-like growth factor I and erythropoiesis. BioFactors (Oxford, England) 3(4):211–216
Google Scholar
Azzouzi I, Moest H, Winkler J, Fauchère JC, Gerber AP, Wollscheid B, Stoffel M, Schmugge M, Speer O (2011) Microrna-96 directly inhibits γ-globin expression in human erythropoiesis. PLoS One 6(7). https://doi.org/10.1371/journal.pone.0022838
Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (n.d.) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer Res 69(13):5553–5559. https://doi.org/10.1158/0008-5472.CAN-08-4277
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012) Involvement of miRNA in erythroid differentiation. Epigenomics 4(1):51–65. https://doi.org/10.2217/epi.11.104
Article
Google Scholar
Blank V, Kim MJ, Andrews NC (1997) Human MafG is a functional partner for p45 NF-E2 in activating globin gene expression. Blood 89(11):3925–3935
Article
Google Scholar
Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271
Article
Google Scholar
Budzinska M, Owczarz M, Pawlik-Pachucka E, Roszkowska-Gancarz M, Slusarczyk P, Puzianowska-Kuznicka M (2016) miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr 16(1):200. https://doi.org/10.1186/s12877-016-0379-y
Article
Google Scholar
Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu C-G, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171. https://doi.org/10.1073/pnas.0800121105
Article
Google Scholar
Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61–76. https://doi.org/10.1097/GIM.0b013e3181cd68ed
Article
Google Scholar
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu C-G, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949. https://doi.org/10.1073/pnas.0506654102
Article
Google Scholar
Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE (2010) Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31(12):2049–2057. https://doi.org/10.1093/carcin/bgq192
Article
Google Scholar
Cui S, Tanabe O, Sierant M, Shi L, Campbell A, Lim K-C, Engel JD (2015) Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood 125(9):1477–1487. https://doi.org/10.1182/blood-2014-10-605022
Article
Google Scholar
Damnernsawad A, Kong G, Wen Z, Liu Y, Rajagopalan A, You X, Wang J, Zhou Y, Ranheim EA, Luo HR, Chang Q, Zhang J (2016) Kras is required for adult hematopoiesis. Stem Cells (Dayton, Ohio) 34(7):1859–1871. https://doi.org/10.1002/stem.2355
Article
Google Scholar
Dong P, Mai Y, Zhang Z, Mi L, Wu G, Chu G, Yang G, Sun S (2014) MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1. Acta Biochim Biophys Sin 46(7):565–571. https://doi.org/10.1093/abbs/gmu043
Article
Google Scholar
Du M-J, Lv X, Hao D-L, Zhao G-W, Wu X-S, Wu F, Liu D-P, Liang C-C (2008) MafK/NF-E2 p18 is required for β-globin genes activation by mediating the proximity of LCR and active β-globin genes in MEL cell line. Int J Biochem Cell Biol 40(8):1481–1493. https://doi.org/10.1016/j.biocel.2007.11.004
Article
Google Scholar
Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol (Clifton, NJ) 1182:289–305. https://doi.org/10.1007/978-1-4939-1062-5_25
Article
Google Scholar
Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y, Kudoh S, Tanaka K, Setoyama M, Nagamura F, Asano S, Kamada N (1999) Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93(4):1355–1363
Article
Google Scholar
El-Kamah GY, Amr KS (2015) Thalassemia—from genotype to phenotype. In: Inherited hemoglobin disorders. InTech Retrieved from http://www.intechopen.com/books/inherited-hemoglobin-disorders/thalassemia-from-genotype-to-phenotype
Fard AD, Hosseini SA, Shahjahani M, Salari F, Jaseb K (2013) Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol-Oncol Stem Cell Res 7(3):47–54
Google Scholar
Geest CR, Coffer PJ (2009) MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86(2):237–250. https://doi.org/10.1189/jlb.0209097
Article
Google Scholar
Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu Zhu S, Ginder GD, Williams DC (2011) p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc Natl Acad Sci U S A 108(18):7487–7492. https://doi.org/10.1073/pnas.1015341108
Article
Google Scholar
Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216. https://doi.org/10.1074/jbc.M109.031427
Article
Google Scholar
Hagh MF, Fard AD, Saki N, Shahjahani M, Kaviani S (2011) Molecular mechanisms of hemoglobin F induction. Int J Hematol-Oncol Stem Cell Res 5(4):5–9
Google Scholar
Havelange V, Garzon R (2010) Micrornas: emerging key regulators of hematopoiesis. Am J Hematol 85(12):935–942. https://doi.org/10.1002/ajh.21863
Article
Google Scholar
Hojjati MT, Azarkeivan A, Pourfathollah AA, Amirizadeh N (2017) Comparison of MicroRNAs mediated in reactivation of the γ-globin in β-thalassemia patients, responders and non-responders to hydroxyurea. Hemoglobin 41(2):110–115. https://doi.org/10.1080/03630269.2017.1290651
Article
Google Scholar
Ingley E (2012) Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 64(5):402–410. https://doi.org/10.1002/iub.1024
Article
Google Scholar
Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038. https://doi.org/10.1182/blood-2009-09-241000
Article
Google Scholar
Kim M, Slack FJ (2014a) MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol 7:84. https://doi.org/10.1186/s13045-014-0084-2
Article
Google Scholar
Lai C-Y, Wu Y-T, Yu S-L, Yu Y-H, Lee S-Y, Liu C-M, Hsieh W-S, Hwu H-G, Chen P-C, Jeng S-F, Chen WJ (2014) Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging. Aging Cell 13(4):679–689. https://doi.org/10.1111/acel.12225
Article
Google Scholar
Lai K, Jia S, Yu S, Luo J, Yunyan He A, Lai K, Jia S, Yu S, Luo J, Yunyan He A, Lai K, Jia S, Yu S, He JL, Y. (2017) Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in B-thalassemia and hereditary persistence of fetal hemoglobin. Oncotarget 5(0):49931–49943. https://doi.org/10.18632/oncotarget.18263
Article
Google Scholar
Lawrie CH (2010) microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol 150(2):144–151. https://doi.org/10.1111/j.1365-2141.2009.07978.x
Article
Google Scholar
Li H, Zhao H, Wang D, Yang R (2011) microRNA regulation in megakaryocytopoiesis. Br J Haematol 155(3):298–307. https://doi.org/10.1111/j.1365-2141.2011.08859.x
Article
Google Scholar
Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X, Song L (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One 5(12):e15797–e15797. https://doi.org/10.1371/journal.pone.0015797
Article
Google Scholar
Litwińska Z, Machaliński B (2017) miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma 58(6):1297–1305. https://doi.org/10.1080/10428194.2016.1243676
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
Google Scholar
Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013) MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One 8(4):1–12. https://doi.org/10.1371/journal.pone.0060436
Article
Google Scholar
Miyamoto K, Miyamoto T, Kato R, Yoshimura A, Motoyama N, Suda T (2008) FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112(12):4485–4493. https://doi.org/10.1182/blood-2008-05-159848
Article
Google Scholar
Modell B, Darlison M (2008) Public health reviews global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86(6):480–487. https://doi.org/10.2471/blt.06.036673
Morison IM, Eccles MR, Reeve AE (2000) Imprinting of insulin-like growth factor 2 is modulated during hematopoiesis. Blood 96(9):3023–8. PMID: 11049980.
Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW-F (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70(1):367–377. https://doi.org/10.1158/0008-5472.CAN-09-1891
Article
Google Scholar
Noh S-J, Miller SH, Lee YT, Goh S-H, Marincola FM, Stroncek DF, Reed C, Wang E, Miller JL (2009) Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med 7:98. https://doi.org/10.1186/1479-5876-7-98
Article
Google Scholar
Perrine SP (2012) Novel therapeutic agents for HbF induction: a new era for treatment of β thalassemia? Thalassemia Rep 1:21–24. https://doi.org/10.4081/thal.2011.s2.e7
Article
Google Scholar
Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353:1135–1146
Article
Google Scholar
Sankaran VG, Menne TF, Šćepanović D, Vergilio J-A, Ji P, Kim J, Thiru P, Orkin SH, Lander ES, Lodish HF (2011) MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A 108(4):1519–1524. https://doi.org/10.1073/pnas.1018384108
Article
Google Scholar
Sankaran VG, Orkin SH (2013) The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 3(1). https://doi.org/10.1101/cshperspect.a011643
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, Descamps B, Floris I, Sangalli E, Vono R, Faglia E, Specchia C, Pintus G, Madeddu P, Emanueli C (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 112(2):335–346. https://doi.org/10.1161/CIRCRESAHA.111.300418
Article
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003
Article
Google Scholar
Tagawa H, Ikeda S, Sawada K (2013) Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci 104(7):801–809. https://doi.org/10.1111/cas.12160
Article
Google Scholar
Wang X, Chu Y, Wang W, Yuan W (2016) mTORC signaling in hematopoiesis. Int J Hematol 103(5):510–518. https://doi.org/10.1007/s12185-016-1944-z
Article
Google Scholar
Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A (2014) The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res 42(7):4283–4293. https://doi.org/10.1093/nar/gku072
Article
Google Scholar