Rao PS, Kumar CG, Reddy BVS (2012) Sweet sorghum: from theory to practice. In: Rao PS, Kumar CG (eds) Characterization of improved sweet sorghum cultivars. Springer, Berlin, pp 1–15
Google Scholar
Wortmann CS, Liska AJ, Ferguson RB, Lyon DJ, Klein RN, Dweikat I (2010) Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agron J 102:319–326. https://doi.org/10.2134/agronj2009.0271
Article
Google Scholar
Xu Y, Li J, Moore C, Xin Z, Wang D (2018) Physico-chemical characterization of pedigreed sorghum mutant stalks for biofuel production. Ind Crop Prod 124:806–811. https://doi.org/10.1016/j.indcrop.2018.08.049
Article
Google Scholar
Rutto LK, Xu Y, Brandt M, Ren S, Kering MK (2013) Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. JSBS 3:113–118. https://doi.org/10.4236/jsbs.2013.32016
Article
Google Scholar
Melillo JM, Richmond T, Yohe GW (2014) Climate change impacts in the United States: the third national climate assessment. US Global Research Program, pp 418–440
Book
Google Scholar
Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Progress Energy Combustion Sci 34:551–573. https://doi.org/10.1016/j.pecs.2007.11.001
Article
Google Scholar
Vogel K, Bruce P, Dien S, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res 4:96–110. https://doi.org/10.1007/s12155-010-9104-4
Article
Google Scholar
Mathur S, Umakanth AV, Tonapi VA, Rita S, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146. https://doi.org/10.1186/s13068-017-0834-9
Article
Google Scholar
Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum Bicolor L. Moench) lines with reduced lignin contents. Bioenergy Res 2:153–164. https://doi.org/10.1007/s12155-009-9041-2
Article
Google Scholar
Xue J, Yang Z, Han L, Liu Y, Liu Y, Zhou C (2015) On-line measurement of proximates and lignocellulose components of corn stover using NIRS. Appl Energy 137:18–25. https://doi.org/10.1016/j.apenergy.2014.09.089
Article
Google Scholar
Whetten RW, MacKay J, Sederoff R (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49(1):585–609. https://doi.org/10.1146/annurev.arplant.49.1.585
Article
Google Scholar
Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 174(3):264–277. https://doi.org/10.1016/j.plantsci.2007.11.014
Article
Google Scholar
Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178(3):229–238. https://doi.org/10.1016/j.plantsci.2010.01.001
Article
Google Scholar
Tao Y, Manners JM, Ludlow MM, Henzell RG (1993) DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 86(6):679–688. https://doi.org/10.1007/BF00222656
Article
Google Scholar
Medraoui L, Ater M, Msikine OBD, Maltouf AF (2007) Evaluation of genetic variability of sorghum (Sorghum bicolor L. Moench) in northwestern Morocco by ISSR and RAPD markers. C R Biol 330(11):789–797. https://doi.org/10.1016/j.crvi.2007.08.005
Article
Google Scholar
Ritter KB, McIntyre CL, Godwin ID, Jordan DR, Chapman SC (2007) An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 157(1-2):161–176. https://doi.org/10.1007/s10681-007-9408-4
Article
Google Scholar
Pecina-Quintero V, López JLA, Colmenero AZ, García NM, Colín CN, Solis-Bonilla JL, Rangel MRA, Prom L (2012) Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers. Pesq agropec bras 47(8):1095–1102. https://doi.org/10.1590/S0100-204X2012000800009
Article
Google Scholar
Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2(1):48–62. https://doi.org/10.3835/plantgenome2008.10.0011
Article
Google Scholar
Pei Z, Gao J, Chen Q, Wei J, Li Z, Luo F, Shi L, Sun S (2010) Genetic diversity of elite sweet sorghum genotypes assessed by SSR markers. Biologia Plantarum 54:653–658. https://doi.org/10.1007/s10535-010-0116-x
Article
Google Scholar
Wang L, Jiao S, Jiang Y, Yan H, Su D, Sun G, Yan X, Sun L (2013) Genetic diversity in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crop Res 149:11–19. https://doi.org/10.1016/j.fcr.2013.04.013
Article
Google Scholar
Disasa T, Feyissa T, Admassu B, Paliwal R, De Villiers SM, Odeny DA (2016) Molecular evaluation of Ethiopian sweet sorghum germplasm and their contribution to regional breeding programs. AJCS 10(4):520–527. https://doi.org/10.21475/ajcs.2016.10.04.p7286x
Article
Google Scholar
Da Silva MJ, Pastina MM, de Souza VF, Schaffert RE, Carneiro PCS, Noda RW, Carneiro JES, Damasceno CMB, Parrella RADC (2017) Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production. PLoS One 12(8):e0183504. https://doi.org/10.1371/journal.pone.0183504
Article
Google Scholar
Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560. https://doi.org/10.1016/j.tplants
Article
Google Scholar
Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448–455. https://doi.org/10.2135/cropsci2005.0274
Article
Google Scholar
Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294. https://doi.org/10.1007/BF02772804
Article
Google Scholar
Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6. https://doi.org/10.1186/1746-4811-9-6
Article
Google Scholar
Simões KS, Silva SA, Machado EL, Silva MS (2017) Genetic divergence in elite castor bean lineages based on TRAP markers. GMR 16(3):1–12. https://doi.org/10.4238/gmr16039776
Article
Google Scholar
Da Silva EF, De Sousa SB, Da Silva GF, Sousa NR, Filho FJN, Hanada RE (2016) TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia Cupana Var. Sorbilis. Plant Gene 6:43–47. https://doi.org/10.1016/j.plgene.2016.03.005
Article
Google Scholar
Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica. 44:225–235. https://doi.org/10.1007/s10681-005-6431-1
Article
Google Scholar
Luo C, Wu HX, Yao QS, Wang SB, Xu WT (2015) Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Genet Mol Res 14(3):7914–7919. https://doi.org/10.4238/2015.July.14.17
Article
Google Scholar
Fabriki OS, Azarkhanian MY (2018) Genetic variability and relationships among Salvia ecotypes/species revealed by TRAP-CoRAP markers. Biotechnol Biotechnological Equip 32(6):1486–1495. https://doi.org/10.1080/13102818.2018.1534555
Article
Google Scholar
Mirajkar SJ, Rai AN, Vaidya ER, Moharil MP, Dudhare MS, Suprasanna P (2017) TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.). Plant Gene 9:64–70. https://doi.org/10.1016/j.plgene.2017.01.002
Article
Google Scholar
Singh RB, Singh B, Singh RK (2017) Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Indian J Plant Physiol 22(3):332–338. https://doi.org/10.1007/s40502-017-0314-z
Article
Google Scholar
Suman A, Ali K, Arro J, Parco AS, Kimbeng CA, Baisakh N (2012) Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. Bioenergy Res 5:197–205. https://doi.org/10.1007/s12155-011-9123-9
Article
Google Scholar
Menzo V, Giancaspro A, Giove S, Nigro D, Zacheo S, Colasuonno P, Marcotuli I, Incerti O, Blanco A, Gadaleta A (2013) TRAP molecular markers as a system for saturation of the genetic map of durum wheat. Euphytica 194:151–160. https://doi.org/10.1007/s10681-013-0891-5
Article
Google Scholar
Prevost A, Wilkinson M (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112. https://doi.org/10.1007/s001220051046
Article
Google Scholar
Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461. https://doi.org/10.1007/s001220100570
Article
Google Scholar
Abuzayed M, El-Dabba N, Frary A, Doganlar S (2017) GDdom: an online tool for calculation of dominant marker gene diversity. Biochem Genet 55:155–157
Article
Google Scholar
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breeding 2:225–238. https://doi.org/10.1007/BF00564200
Article
Google Scholar
Liu K, Muse M (2005) Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129
Article
Google Scholar
Rohlf FJ (1998) NTSYS-PC: numerical taxonomy and multivariate analysis system. Version 2.01. Exeter software, Setauket
Google Scholar
Cruz CD (2013) GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276
Article
Google Scholar
Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a no metric hypothesis. Psychometrika 29(1):1–27
Article
MathSciNet
Google Scholar
Nasidi M, Akunna J, Deeni Y, Blackwood D, Walker G (2010) Bioethanol in Nigeria: comparative analysis of sugarcane and sweet sorghum as feedstock sources. Energ Environ Sci 3:1447–1457. https://doi.org/10.1039/c0ee00084a
Article
Google Scholar
Motlhaodi T, Mulatu G, Chite S, Fatih M, Ortiz R, Bryngelsson T (2017) Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from southern Africa as revealed by microsatellite markers and agro-morphological traits. Genet Resour Crop Evol 64:599–610. https://doi.org/10.1007/s10722-016-0388-x
Article
Google Scholar
Kumar A, Mishra P (2014) Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst Evol 300:1409–1420. https://doi.org/10.1007/s00606-013-0970-z
Article
Google Scholar
Junior CAD, Manechini JV, Correˆa RX, Pinto ACR, da Costa JB, Favero TM, Pinto LR (2020) Genetic structure analysis in sugarcane (Saccharum spp.) using target region amplification polymorphism (TRAP) markers based on sugar- and lignin-related genes and potential application in core collection development. Sugar Tech 22(4):641–654
Article
Google Scholar