Makarova K, Slesarev A, Wolf Y, Sorokin A, Koonin E, Pavlov A et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616
Article
Google Scholar
Liu W, Sun Z, Zhang J, Gao W, Wang W, Wu L et al (2009) Analysis of microbial composition in acid whey for dairy fan making in Yunnan by conventional method and 16S rRNA sequencing. Curr Microbiol 59:199–205. https://doi.org/10.1007/s00284-009-9423-x
Article
Google Scholar
Liu W, Bao Q, Qing M, Chen X, Sun T, Li M et al (2012) Isolation and identification of lactic acid bacteria from Tarag in eastern inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol Res 167:110–115. https://doi.org/10.1016/j.micres.2011.05.001
Article
Google Scholar
Wang D, Liu W, Ren Y, De L, Zhang D, Yang Y (2016) Isolation and identification of lactic acid bacteria from traditional dairy products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR analysis of predominant species. Korean J Food Sci Animal Res 36(4):499–507
Article
Google Scholar
Miller N, Wetterstrom W (2000) The beginnings of agriculture: the ancient near East and North Africa. In: Kiple K, Ornelas K (eds) (eds)The Cambridge world history of food, 2nd edn. Cambridge University Press, Cambridge, pp 1123–1139
Google Scholar
van der Vossen JM, van der Lelie D, Venema G (1987) Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. ApplEnvironMicrobiol 53:2452–2457
Google Scholar
Takala T (2005) Nisin immunity and food-grade transformation in lactic acid bacteria, Academic Dissertation. University of Helsinki, Finland
Google Scholar
Martin MC, Alonso JC, Suarez JE, Alvarez MA (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66(6):2599–2604. https://doi.org/10.1128/AEM.66.6.2599-2604.2000
Article
Google Scholar
Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J et al (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68(11):5663–5670. https://doi.org/10.1128/AEM.68.11.5663-5670.2002
Article
Google Scholar
Peterbauer C, Maischberger T, Haltrich D (2011) Food-grade gene expression in lactic acid bacteria. Biotechnol J 6(9):1147–1161. https://doi.org/10.1002/biot.201100034
Article
Google Scholar
Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP (2004) Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl Environ Microbiol 70(10):6076–6085
Article
Google Scholar
Cui Y, Hu T, Xiaojun Q, Zhang L, Ding Z, Dong A (2015) Plasmids from food lactic acid bacteria: diversity, similarity, and new developments. J Mol Sci 16:13172–13202
Article
Google Scholar
Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY et al (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58(8):2360–2367
Google Scholar
Kumar B, Balgir PP, Kaur B, Mittu B, Chauhan A (2012) In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study. Pharmaceut Anal Acta 3(8):183
Article
Google Scholar
Bukhtiyarova M, Yang R, Ray B (1994) Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcusacidilactici strain. Appl Environ Microbiol 60:3405–3408
Google Scholar
Kaur B, Balgir PP (2006) Pediocin CP2 Gene localisation to plasmid pCP289 of Pediococcus acidilactici MTCC 5101. Internet J Microbiol 3(2):1–7
Ray B, Motlagh AM, Johnson MC, Bozoglu F (1992) Mapping of pSMB74, a plasmid encoding bacteriocin AcH production (Pap+) trait in Pediococcus acidilactici H. Lett Appl Microbiol 15:35–37
Article
Google Scholar
Venema K, Kok J, Marugg JD, Toonen MJ, Ledeboer AM, Venema G, Chikindas ML (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522
Article
Google Scholar
Chikindas M, Emond E, Haandrikman AJ, Kok J, Leenhouts K, Pandian S et al (2010) Heterologous processing and export of the bacteriocins pediocin PA-1 and lactococcin a in Lactococcus lactis: a study with leader exchange. Probiotics Antimicro Prot 2:66. https://doi.org/10.1007/s12602-009-9023-x
Article
Google Scholar
Balgir PP, Kaur B, Kaur T, Daroch N, Kaur G (2013) In vitro and in vivo survival and colonic adhesion of Pediococcus acidilactici MTCC5101 in human gut. Biomed Res Int 2013:1–9
Article
Google Scholar
Alegre MT, Rodriguez MC, Mesas JM (2005) Nucleotide sequence, structural organization and host range of pRS4, a small cryptic Pediococcus pentosaceus plasmid that contains two cassettes commonly found in other lactic acid bacteria. FEMS Microbiol Lett 250:151–156
Article
Google Scholar
Srikanth A, Halami PM (2008) Cloning of pediocin PA-1 and its immunity genes from Pediococcusacidilactici K7 using pAMJ shuttle vector into Lactococcuslactis MG1363. Indian J Biotechnol 7:550–553
Google Scholar
Alegre MT, Rodriguez MC, Mesas JM (2009) Characterization of pRS5: a theta-type plasmid found in a strain of Pediococcus pentosaceus isolated from wine that can be used to generate cloning vectors for lactic acid bacteria. Plasmid 61:130–134
Article
Google Scholar
Wada T, Noda M, Kashiwabara F, Jeon HJ, Shirakawa A, Yabu H et al (2009) Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli. Microbiology 155:1726–1737
Article
Google Scholar
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
Google Scholar
Yan TR, Wang MR, Chen CH (1998) A facile PCR method for detecting replication mode of lactococcial plasmids. Biotechnol Tech 12:85–89
Article
Google Scholar
Rodriguez MC, Alegre MT, Mesas JM (2007) Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid 58:44–50
Article
Google Scholar
Gravesen A, Josephsen J, von Wright A, Vogensen FK (1995) Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34:105–118
Article
Google Scholar
Perez-Arellano I, Zuniga M, Perez-Martinez G (2001) Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid 46:106–116
Article
Google Scholar
Tagg JR, Dajani AS, Wannamaker IW (1976) Bacteriocins of Gram-positive bacteria. Microbiol Rev 40:722–751
Google Scholar
Sarkar PK, Banerjee S (1996) Antibacterial activity of lactic acid bacterial isolates obtained from natural habitats. J Food Sci Tec 33:231–233
Google Scholar
Geoffroy MC, Guyard C, Quatannens B, Pavan S, Lange M, Mercenier A (2000) Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 66(1):383–391
Article
Google Scholar
Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55:11–16
Google Scholar
Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 15:391–398
Article
Google Scholar
Yin S, Zhai Z, Wang G, An H, Luo Y, Hao Y (2011) A novel vector for lactic acid bacteria that uses a bile salt hydrolase gene as a potential food-grade selection marker. J Biotechnol 152:49–53
Article
Google Scholar
Kumar R, Rajkumar H, Kumar M, Varikuti SR, Athimamula R, Shujauddin M, Ramagoni R, Kondapalli N (2013) Molecular cloning, characterization and heterologous expression of bile salt hydrolase (Bsh) from Lactobacillus fermentum NCDO394. Mol Biol Rep 40:5057–5066. https://doi.org/10.1007/s11033-013-2607-2
Article
Google Scholar
Jiang J, Hang X, Zhang M, Liu X, Li D, Yang H (2010) Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Ann Microbiol 60:81–88. https://doi.org/10.1007/s13213-009-0004-9
Article
Google Scholar
Oosta GM, Mathewson NS, Catravas GN (1978) Optimization of folin-ciocalteu reagent concentration in an automated Lowry protein assay. Anal Biochem 89:31–34
Article
Google Scholar
Chang SM, Yan TR (2014) Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase. Biotechnol Lett 36(2):327–335
Article
Google Scholar
Dong Z, Zhang J, Lee B, Li H, Du G, Chen J (2012) A bile salt hydrolase gene of Lactobacillusplantarum BBE7 with high cholesterol-removing activity. Eur Food Res Technol 235:419–427. https://doi.org/10.1007/s00217-012-1769-9
Article
Google Scholar
Suzuki H, Yano H, Brown CJ, Top EM (2010) Predicting plasmid promiscuity based on genomic signature. J Bacteriol 192(22):6045–6055. https://doi.org/10.1128/JB.00277-10
Article
Google Scholar
del Solar G, Hernandez-Arriaga AM, Gomis-Ruth FX, Coll M, Espinosa M (2002) A genetically economical family of plasmid-encoded transcriptional repressors involved in control of plasmid copy number. J Bacteriol 184(18):4943–4951. https://doi.org/10.1128/JB.184.18.4943-4951.2002
Article
Google Scholar
Froseth BR, McKay LL (1991) Molecular characterization of the nisin resistance region of Lactococcuslactis subsp. lactis biovar diacetylactis DRC3t. Appl Environ Microbiol 57(3):804–811
Google Scholar
Posno M, Leer RJ, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC, Pouwels PH (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828
Google Scholar
Allison GE, Klaenhammer TR (1996) Functional analysis of the gene encoding immunity to Lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 62(12):4450–4460
Google Scholar
Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcuslactis. Appl Environ Microbiol 62(3):1008–1013
Google Scholar
Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcuslactis. Appl Microbiol Biotechnol 49(4):417–423
Article
Google Scholar
Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S (2002) Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 68:6152–6161
Article
Google Scholar
Sridhar V, Smeianov VV, Steele JL (2006) Construction and evaluation of food-grade vectors for Lactococcuslactis using aspartate aminotransferase and α-galactosidase as selectable markers. J Appl Microbiol 101(1):161–171
Article
Google Scholar
Richards HA, Han CT, Hopkins RG, Failla ML, Ward WW, Stewart CN Jr (2003) Safety assessment of recombinant green fluorescent protein orally administered to weaned rats. J Nutr 133:1909–1912
Article
Google Scholar
Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D et al (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 99:3479–3490
Article
Google Scholar
Shimizu-Kadota M, Shibahara-Sone H, Ishiwa H (1991) Shuttle plasmid vectors for Lactobacillus casei and Escherichia coli with a minus origin. Appl Environ Microbiol 57:3292–3300
Google Scholar
Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillusjohnsonii 100–100 and other Lactobacillus species. Microbiology 147:3403–3412
Article
Google Scholar
Kim GB, Mathieu B, Lee BH (2005) Cloning and characterization of a bile salt hydrolase (bsh) from Bifidobacterium adolescentis. Biotechnol Lett 27(12):817–822
Article
Google Scholar
Suresh CG, Pundle AV, SivaRaman H, Rao KN, Brannigan JA et al (1999) Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol 6:414–416
Article
Google Scholar
Oinonen C, Rouvinen J (2000) Structural comparison of Ntn-hydrolases. Protein Sci 9:2329–2337
Article
Google Scholar
Kim GB, Miyamoto CM, Meighen EA, Lee BH (2004) Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl Environ Microbiol 70(9):5603–5612. https://doi.org/10.1128/AEM.70.9.5603-5612.2004
Article
Google Scholar
Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity inprobiotics. Appl Environ Microbiol 72:1729–1738
Article
Google Scholar
Lambert JM, Bongers RS, De Vos WM, Kleerebezem M (2008) Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl Environ Microbiol 74:4719–4726
Article
Google Scholar
Balgir PP, Kaur B, Kaur T (2014) A preliminary clinical evaluation of probiotics Pediococcus acidilactici MTCC5101 and Bacillus coagulans MTCC492 on young anemic women. Int J Fermented Foods 3:45
Article
Google Scholar
Simonen M, Palva I (1993) Protein secretion in bacillus species. Microbiol Rev 57(1):109–137
Google Scholar
van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95:155–160
Article
Google Scholar
Ng DTW, Sarkar CA (2013) Engineering signal peptides for enhanced protein secretion from Lactococcuslactis. Appl Environl Microbiol 79(1):347–356
Article
Google Scholar
van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis Usp45 secretion signal in the secretion of a homologous proteinase and a heterologous a-amylase. Mol Gen Genet 240:428–434
Article
Google Scholar
Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W et al (2000) Treatment of murine colitis by Lactococcuslactis secreting interleukin-10. Science 289(5483):1352–1355. https://doi.org/10.1128/AEM.02667-12
Article
Google Scholar
Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127
Article
Google Scholar
Xu S, Liu T, Radji CA, Yang J, Chen L (2016) Isolation, identification, and evaluation of new lactic acid bacteria strains with both cellular antioxidant and bile salt hydrolase activities in vitro. J Food Prot 79(11):1919–1928. https://doi.org/10.4315/0362-028X.JFP-16-096
Article
Google Scholar
O’Flaherty S, Briner Crawley A, Theriot CM, Barrangou R (2018) The Lactobacillus bile salt hydrolase repertoire reveals niche-specific adaptation. mSphere 3:e00140–e00118. https://doi.org/10.1128/mSphere.00140-18
Article
Google Scholar
Brashears MM, Gilliland SE, Buck LM (1998) Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J Dairy Sci 81(8):2103–2110
Article
Google Scholar
Coleman JP, Hudson LL (1995) Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridiumperfringens. ApplEnvironMicrobiol 61(7):2514–2520
Google Scholar
Tanaka H, Hashiba H, Kok J, Mierau I (2000) Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl Environ Microbiol 66(6):2502–2512
Article
Google Scholar
Yuksekdag ZN, Aslim B (2010) Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (Sucuk). J Microbiol Biotechnol 20:161–168. https://doi.org/10.4014/jmb.0904.04019
Article
Google Scholar
Ruiz-Moyano S, Martin A, Benito MJ, Hernandez A, Casquete R, de Guia CM (2011) Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiol 28(5):839–847
Article
Google Scholar
Ribeiro MCO, de Souza Vandenberghe LP, Spier MR, Paludo KS, Soccol CR, Soccol VT (2014) Evaluation of probiotic properties of Pediococcus acidilactici B14 in association with Lactobacillus acidophilus ATCC 4356 for application in a soy based aerated symbiotic dessert. Brazilian Arch Biol Technol 57(5):755–765
Article
Google Scholar