Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147
Article
Google Scholar
Litz RE, Raharjo S (2005) Dimocarpus longan longan and Litchi chinensis litchi. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, pp 628–636
Chapter
Google Scholar
Pan Y, Wang K, Huang S (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem 106(3):1264–1270
Article
Google Scholar
Yang B, Zhao M, Shi J, Yang N, Jiang Y (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106(2):685–690
Article
Google Scholar
Lal N, Sahu N, Jayswal DK, Diwan G, Tandon K (2020) Traditional, medicinal and nutraceutical values of minor fruit: longan. Curr J Appl Sci Technol 39:59–70
Article
Google Scholar
Khan MR, Huang C, Durrani Y, Muhammad A (2021) Chemistry of enzymatic browning in longan fruit as a function of pericarp pH and dehydration and its prevention by essential oil, an alternative approach to SO2 fumigation. PeerJ. 9:e11539
Article
Google Scholar
Muthukumarasamy R, Ilyana A, Fithriyaani NA, Najihah NA, Asyiqin N, Sekar M (2016) Formulation and evaluation of natural antioxidant cream comprising methanolic peel extract of Dimocarpus longan. Int J Pharm Clin Res 8(9):1305–1309
Google Scholar
Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18:1995–2018
Article
Google Scholar
Hasan SMR, Jamila M, Majumder MM, Akter R, Hossain MM, Mazumder MEH et al (2009) Analgesic andantioxidant activity of the hydromethanolic extract of Mikaniascandens (L.) willd leaves. Am J Pharmacol Toxicol 4:1–7
Article
Google Scholar
Zainol MK, Abd-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total 4-phenolic compounds of leaf, root and petiole of four accessions of centella asiatica L. urban. Food Chem 81:575–581
Article
Google Scholar
Cook NC, Samman S (1996) Flavonoids- chemistry, metabolism, cardioprotective effecst and dietary sources. Nutr Biochem. 7:66–76
Article
Google Scholar
Sebai H, Jabri MA, Souli A, Rtibi K, Selmi S, Tebourbi O et al (2014) Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol. 152(2):327–332
Zemestani M, Rafraf M, Asghari-Jafarabadi M (2016) Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nut 32:66–72. https://doi.org/10.1016/j.nut.2015.07.011
Article
Google Scholar
Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 30:233–245
Google Scholar
Ranpariya V, Parmar S, Sheth N, Chandrashekhar V (2011) Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharma Biol 49:696–701
Article
Google Scholar
Silva N, Barbosa L, Seito L, Fernandes Junior A (2012) Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Pro Res 26:1510–1514. https://doi.org/10.1080/14786419.2011.564582
Article
Google Scholar
Cvetanovic A (2021) Apigenin. 545-562. In: Mushtaq M, Anwar F (eds) A centum of valuable plant bioactives. Academic Press. https://doi.org/10.1016/B978-0-12-822923-1.00024-8. https://www.sciencedirect.com/science/article/pii/B9780128229231000248
Shaltout K (2018) Status of the Egyptian biodiversity: a bibliography (2000-2018). Contribution to the sixth national report on biological diversity in Egypt. UNDP
Holobiuc M, Blindu R, Mitoi M, Heleciuc F, Cristea V (2009) The establishment of an in vitro gene bank in Dianthus spiculifolius Schur and D. glacialis ssp. Gelidus (Schott Nym. et Kotschy) Tutin: I. The initiation of a tissue collection and the characterization of the cultures in minimal growth conditions. Ann For Res 52:117–128
Google Scholar
Pence VC (2005) In vitro collecting (IVC). I. The effect of media and collection method on contamination in temperature and tropical collections. In Vitro Cell Dev Biol Plant. 41:324–332
Article
Google Scholar
Rajasekharan PE, Ambika SR, Ganeshan S (2009) In vitro conservation of Tylophora indica: a threatened medicinal plant. IUP J Genet Evol. 11(3):26–35
Google Scholar
Sarasan V, Cripps R, Ramsay MM, Atherton C, Michen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol Plant. 42:206–214
Article
Google Scholar
International Union for Conservation of Nature (2020) “Fagaceae” The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32399A9698234.en. Version 2020-2 from https://www.iucnredlist.org. Accessed 10 Oct 2020
World Checklist of Selected Plant Families (Facilitated by the Royal Botanic Gardens, Kew. Retrieved 5 September 2016 – via The Plant List). Published on the Internet; http://wcsp.science.kew.org/
Aitken-christie J, Kozai T, Smith MAL (1995) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht
Book
Google Scholar
Singh M, Sonkusale S, Niratker CH, Shukla P (2014) Micropropagation of Shorea robusta: an economically important woody plant. J Forest Sci 60(2):70–74
Article
Google Scholar
Manju S (2002) Biodiversity conservation and socio-economic development: role and relevance of biotechnology. In: Nandi SK, Palni LMS, Kumar A (eds) Role of plant tissue culture in biodiversity conservation and economic development. G.B. Institute of Himalayan Environments and Development, Himavikas Occassional Publication, 15, pp 1–9
Lai Z, Chen C, Zeng L, Chen Z (2000) Somatic embryogenesis in longan (Dimocarpus longan Lour.). Somatic embryogenesis in woody plants. Springer, Dordrecht, pp 415–431
Chapter
Google Scholar
Rout GR, Jain M (2004) Micropropagation of ornamental plant – cut flower. Propag Ornament Plant. 4(2):3–28
Google Scholar
Amoo SO, Staden JV (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micro propagated Huernia hystrix. Plant Cell Tissue Organ Cult 112:249–256
Article
Google Scholar
Guo B, Wei YH, Abbasi BH, Zeb A, Xu LL (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(45):8984–9000
Article
Google Scholar
Jiafu W, Bizhu H (2000) In vitro culture of longan shoot tips. J Fujian Agric Univ. 29(1):23–26
Google Scholar
Thu M, Lin Y, Chen J, Chunzhen C, Munir N, Xu X et al (2017) Flower types, pollen morphology, and in vitro pollen germination of longan (Dimocarpus longan Lour.). J Botany Res 1:50–56
Google Scholar
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with to-bacco tissue culture. Physiologia Plantarum. 15:473–497
Article
Google Scholar
Pirttilä MA, Hirsikorpi M, Kämäräinen T, Jaakola L, Hohtola A (2001) DNA isolation methods for medicinal and aromatic plants. Plant Mol Biol Rep. 19:273
Article
Google Scholar
Vos P, Hogers R, Bleeker M, Reljans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 21:4407–4414
Article
Google Scholar
Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tiss Organ Cult 142:583–593. https://doi.org/10.1007/s11240-020-01885-4
Article
Google Scholar
Biswas N, Balac P, Narlakanti SK, Enamul Haque MD, Mehedi Hassan MD (2013) Identification of phenolic compounds in processed cranberries by HPLC method. J Nutr Food Sci 3:181. https://doi.org/10.4172/2155-9600.1000181
Article
Google Scholar
Duncan DB (1955) Multiple range and multiple “F” test. Biometrics 11:1–42
Article
MathSciNet
Google Scholar
Jiang Q et al (2012) Establishment of an in vitro plant regeneration protocol for Casuarina cunninghamiana Miq. via indirect organogenesis. New For. 43:143–154
Article
Google Scholar
Wang S, Tang L, Chen F (2001) In vitro flowering of bitter melon. Plant Cell Rep. 20:393–397
Article
Google Scholar
Karatas M, Aasim M, Çinar A, Dogan M (2013) Adventitious shoot regeneration from leaf explant of dwarf hygro (Hygrophila polysperma (Roxb.) T. Anderson). Sci World J. 2013:680425
Article
Google Scholar
Mali AM, Chavan NS (2016) In vitro rapid regeneration through direct organogenesis and ex-vitro establishment of Cucumis trigonus Roxb.: an underutilized pharmaceutically important cucurbit. Ind Crops Prod. 83:48–54
Article
Google Scholar
Ullah A, Munir S, Badshah SL, Khan LN, Ghani L, Poulson BG, Emwas AH, Jaremko M (2020) Important flavonoids and their role as a therapeutic agent. Molecules (Basel, Switzerland) 25(22):5243. https://doi.org/10.3390/molecules25225243
Article
Google Scholar
Chalupa V (2002) In vitro propagation of mature trees of Sorbus aucuparia L. and field performance of micropropagated trees. J For Sci 48:529–535
Article
Google Scholar
Ritchie SW, Hodgess TK (1993) Cell culture and regeneration of transgenic plants. Transgenic Plant 1:147–173
Article
Google Scholar
Mendoza JP, Garcia GR, Quiroz K, Chong B, Pino H, Carrasco B (2021) In vitro propagation of Gaultheria pumila (L.f.) D.J. Middleton (Ericaceae), a Chilean native berry with commercial potential. Int J Agric Nat Resour 48:83–96
Google Scholar
Karyanti ST, Rudiyana Y, Hanifah NF, Sa’adah N, Dasumiati (2021) Micropropagation of red ginger (Zingiber officinale Rosc. Var. Rubrum) using several types of cytokinins. J Phys 1751:012051
Google Scholar
Kulpa D, Wesołowska A, Jadczak P (2018) Micropropagation and composition of essentials oils in garden thyme (Thymus vulgaris L.). Not Bot Horti Agrobo 46(2):525–532
Article
Google Scholar
Rahimi S, Naderi R, Ghaemaghami SA, Kalatejari S, Farham B (2013) Study on effects of different Plant Growth Regulators types in shoot regeneration and node formation of Sutsuki Azalea (Rhododendron indicum): a commercially important bonsai. 3rd International Conference on Tissue Engineering, ICTE2013. Procedia Eng 59:240–246
Article
Google Scholar
Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants 9:26–38
Google Scholar
Nikule HA, Nitnaware KM, Chambhare MR, Kadam NS, Borde MY, Nikam TD (2020) In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: a new source of phyllanthin, hypophyllanthin and phyltetralin. Sci Rep 10:10668
Article
Google Scholar
De Carvalho PP, Antoniazzi CA, De Faria RB, Carvalho IFD, Rocha D, Silva ML (2019) In vitro organogenesis from root explants of Passiflora miniata Mast., an amazonian species with ornamental potential. Braz Arch Biol Technol. 62:e19170803
Article
Google Scholar
Ahmad N, Anis M (2007) Rapid clonal multiplication of a woody tree, Vitex negundo L. through axillary shoots proliferation. Agrofor Syst 71:195–200
Article
Google Scholar
Mansouri K, Preece JE (2009) The influence of plant growth regulators on explant performance, bud break, and shoot growth from large stem segments of Acer saccharinum L. Plant Cell Tissue Organ Cult 99:313
Article
Google Scholar
Taha RA, Allam MA, Hassan SAM, Bakr BMM, Hassan MM (2021) Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. J Genet Eng Biotechnol. 19:14
Article
Google Scholar
Dey M, Bakshi S, Galiba G (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3. Biotech. 2:233–240
Google Scholar
Mundhara R, Rashid A (2002) Stimulation of shoot-bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium: effect of calcium, cytokinin and thidiazuron. Plant Sci. 162:211–214
Article
Google Scholar
Hutchinson M, Murch S, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium× hortorum Bailey). J Plant Physiol 149:573–579
Article
Google Scholar
Dello IR, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 17(8):678–682
Article
Google Scholar
Kulaeva ON (1980) In: Skoog F (ed) Plant growth substances. Springer-Verlag. Berlin, Heidelberg, pp 119–128
Google Scholar
Yew CK, Balakrishnan B, Sundasekaran J, Subramaniam S (2010) The effect of cytokinins on in vitro shoot length and multiplication of Hymenocallis littoralis. J Med Plants Res 4:2641–2646
Article
Google Scholar
Suarez Padrón IE, Pérez Meza PM, López Díaz CM (2020) Evaluation of sucrose and GA3 in an in vitro shoot culture of Alpinia purpurata (Zingiberaceae). Ciencia y Tecnología Agropecuaria 21(2):1–13. https://doi.org/10.21930/rcta
Ali S, Khan N, Nouroz F, Erum S, Nasim W, Adnan SM (2018) In vitro effects of GA3 on morphogenesis of cip potato explants and acclimatization of plantlets in field. In Vitro Cell Dev Biol Plant. 54(1):104–111
Article
Google Scholar
Brondani G, de Wit OH, Baccarin F, Natal A, de Almeida M (2012) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. In Vitro Cell Dev Biol Plant 48(5):478–487
Article
Google Scholar
Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34(4):845–872
Article
Google Scholar
Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34(4):740–760
Article
Google Scholar
Kuhnle J, Moore P, Haddon W, Fitch M (1983) Identification of gibberellins from sugarcane plants. J Plant Growth Regul 2(1):59–71
Article
Google Scholar
Sarropoulou V, Maloupa E (2019) Micropropagation and ex situ conservation of Silene fabaria (L.) Sm. in Sibth. & Sm. subsp. domokina Greuter (Caryophyllaceae); an important endemic plant in Greece with medicinal and ornamental value. Journal of Advances in Biotechnology 8:1044–1057. https://doi.org/10.24297/jbt.v8i0.8062
Nitnaware KM, Naik DG, Nikam TD (2011) Tidiazuron-induced shoot organogenesis and production of hepatoprotective lignan phyllanthin and hypophyllanthin in Phyllanthus amarus. Plant Cell Tissue Organ Cult. 104:101–110
Article
Google Scholar
Shiragave PD (2015) In vitro micropropagation study in a medicinal plant Phyllanthus reticulates Poir. Int J Adv Life Sci. 8:161–166
Google Scholar
Saiju HK, Bajracharya A, Rajbahak B, Ghimire S (2018) Comparative study of growth statistics of two species of Paulownia and optimization of rooting methods. Nepal J Biotech 6(1):11–15
Article
Google Scholar
Yadollahi A, Arab MM, Shojaeiyan A, Shokri S, Ghojah SM (2014) Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G×N15 (hybrid of almond x peach) vegetative rootstock. J Genetic Engin Biotech 12:81–87
Article
Google Scholar
Raveendar S, Lee G, Lee KJ, Shin M, Kim SH, Lee J, Cho G, Hyun DY (2019) DNA barcoding for efficient identification of Triticum subspecies: evaluation of four candidate loci on phylogenetic relationships. Plant Breed Biotech 7(3):220–228
Article
Google Scholar
Mirzaei L, Yadollahi A, Kermani M, Naderpour M, Zeinanloo A, Farsi M, Davoodi D (2021) Evaluation of genetic stability in olive callus-induced and meristem-induced shoots using flow cytometry and amplified fragment length polymorphism techniques. Plant Methods 17:10
Article
Google Scholar
Wójcik D, Trzewik A, Kucharska D (2021) Field performance and genetic stability of micropropagated gooseberry plants (Ribes grossularia L.). Agronomy 11:45
Article
Google Scholar
Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23(7):492–496
Article
Google Scholar
Srivastava S, Krishna R, Sinha RP, Singh M (2017) TDZ-induced plant regeneration in Brassica oleracea L. var. botrytis: effect of antioxidative enzyme activity and genetic stability in regenerated plantlets. In Vitro Cell Dev Biol Plant 53:598–605
Article
Google Scholar
Bhardwaj AK, Singh B, Kaur K, Roshan P, Sharma A, Dolker D et al (2018) In vitro propagation, clonal fidelity and phytochemical analysis of Rhodiola imbricate Edgew: a rare trans-Himalayan medicinal plant. Plant Cell Tiss Org Cult 135:499–513
Article
Google Scholar
Karp A, Edwards K, Bruford M, Vosman B, Morgante M, Seberg O, Kremer A, Boursot P, Arctander P, Tautz D, Hewitt G (1997) Newer molecular technologies for biodiversity evaluation: opportunities and challenges. Nature Biotechnol 15:625–628
Article
Google Scholar
Neqi MS, Singh A, Lakshmikumaran (2000) Genetic variation and relationship among and within Withania species as revealed by AFLP markers. Genome. 43(6):975–980
Article
Google Scholar
Palacio L, Cantero JJ, Cusidóc RM, Goleniowski ME (2012) Phenolic compound production in relation to differentiation in cell and tissue cultures of Larreadi varicata (Cav.). Plant Sci 193–194:1–7
Article
Google Scholar
Dučaiová Z, Petruľová V, Repčák M (2013) Salicylic acid regulates secondary metabolites content in leaves of Matricaria chamomilla. Biologia 68:904–909. https://doi.org/10.2478/s11756-013-0217-z
Article
Google Scholar
Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478. https://doi.org/10.1021/jf071953k
Article
Google Scholar
Haghi G, Hatami A, Mehran M (2014) Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharma Sci 9(1):31–37
Google Scholar