Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Article
Google Scholar
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273
Article
Google Scholar
Gorbalenya AE, Baker SC, Baric R, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW (2020) Severe acute respiratory syndrome-related coronavirus: the species and its viruses–a statement of the Coronavirus Study Group
Google Scholar
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733
Article
Google Scholar
(2020) Clinical study of anti-CD147 humanized meplazumab for injection to treat with 2019-nCoV pneumonia. Clinical Trials.Gov. https://clinicaltrials.gov/ct2/show/NCT04275245
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574
Article
Google Scholar
Moss P (2022) The T cell immune response against SARS-CoV-2. Nat Immunol 23(2):186–193. https://doi.org/10.1038/s41590-021-01122-w
Article
Google Scholar
Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen M, O’Mahony L, Gao Y, Nadeau K, Akdis CA (2020) Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75(7):1564–1581
Article
Google Scholar
Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, Tang X, Temperton NJ, Weiss RA, Brenchley JM (2008) T cell responses to whole SARS coronavirus in humans. J Immunol 181(8):5490–5500
Article
Google Scholar
Ng O-W, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan Y-J (2016) Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34(17):2008–2014
Article
Google Scholar
Guidotti LG, Chisari FV (2000) Cytokine-mediated control of viral infections. Virology 273(2):221–227
Article
Google Scholar
Rakib A, Sami SA, Islam MA, Ahmed S, Faiz FB, Khanam BH, Marma KK, Rahman M, Uddin MM, Nainu F, Emran TB, Simal-Gandara J (2020) Epitope-based immunoinformatics approach on nucleocapsid protein of severe acute respiratory syndrome-coronavirus-2. Molecules 25(21):5088. https://doi.org/10.3390/molecules25215088
Article
Google Scholar
Chen H-Z, Tang L-L, Yu X-L, Zhou J, Chang Y-F, Wu X (2020) Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infect Dis Poverty 9(1):88. https://doi.org/10.1186/s40249-020-00713-3
Article
Google Scholar
Waqas M, Haider A, Sufyan M, Siraj S, Sehgal SA (2020) Determine the potential epitope based peptide vaccine against novel SARS-CoV-2 targeting structural proteins using immunoinformatics approaches. Front Mol Biosci 7 https://www.frontiersin.org/article/10.3389/fmolb.2020.00227
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C (2017) Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol 8:292
Article
Google Scholar
Apostolopoulos V, Yuriev E, Lazoura E, Yu M, Ramsland PA (2008) MHC and MHC-like molecules: structural perspectives on the design of molecular vaccines. Hum Vaccin 4(6):400–409
Article
Google Scholar
Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2. 1 by mass spectrometry. Science 255(5049):1261–1263
Article
Google Scholar
Falk K, Rötzschke O, Stevanovié S, Jung G, Rammensee H-G (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324):290–296
Article
Google Scholar
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T (2010) The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. Tissue Antigens 76(4):259–275
Article
Google Scholar
Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473. https://doi.org/10.1146/annurev-immunol-032712-095910
Article
Google Scholar
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M (n.d.) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa379
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4 http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
Article
Google Scholar
Doytchinova IA, Flower DR (2007) Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 25:856–866
Article
Google Scholar
Doytchinova IA, Flower DR (2008) Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J 1:22–26
Article
Google Scholar
Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (n.d.) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454
Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theor Comput 10:4745–4758
Article
Google Scholar
Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tuffery P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40:W288–W293
Article
Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Article
Google Scholar
Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England) 30(6):846–851. https://doi.org/10.1093/bioinformatics/btt619
Article
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571
Chapter
Google Scholar
Biswas S, Mudi S (2020) Genetic variation in SARS-CoV-2 may explain variable severity of COVID-19. Med Hypotheses 143:109877. https://doi.org/10.1016/j.mehy.2020.109877
Article
Google Scholar
Secolin R, de Araujo TK, Gonsales MC, Rocha CS, Naslavsky M, De Marco L, Bicalho MAC, Vazquez VL, Zatz M, Silva WA, Lopes-Cendes I (2021) Genetic variability in COVID-19-related genes in the Brazilian population. Human Genome Var 8(1):15. https://doi.org/10.1038/s41439-021-00146-w
Article
Google Scholar
Migliorini F, Torsiello E, Spiezia F, Oliva F, Tingart M, Maffulli N (2021) Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res 26(1):84. https://doi.org/10.1186/s40001-021-00563-1
Article
Google Scholar
Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, Thompson RF (2021) Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol 94(13):e00510–e00520. https://doi.org/10.1128/JVI.00510-20
Article
Google Scholar
Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, Abdollahi E, Inman RD (2021) HLA, immune response, and susceptibility to COVID-19. Front Immunol 11:3581) https://www.frontiersin.org/article/10.3389/fimmu.2020.601886
Article
Google Scholar
Langton DJ, Bourke SC, Lie BA, Reiff G, Natu S, Darlay R, Burn J, Echevarria C (2021) The influence of HLA genotype on the severity of COVID-19 infection. HLA 98(1):14–22. https://doi.org/10.1111/tan.14284
Article
Google Scholar
Hafez M, El-Shennawy FA (1986) HLA-antigens in the Egyptian population. Forensic Sci Int 31(4):241–246. https://doi.org/10.1016/0379-0738(86)90162-3
Article
Google Scholar
Abdelhafiz AS, Ali A, Fouda MA, Sayed DM, Kamel MM, Kamal LM, Khalil MA, Bakry RM (2022) HLA-B*15 predicts survival in Egyptian patients with COVID-19. Hum Immunol 83(1):10–16. https://doi.org/10.1016/j.humimm.2021.09.007
Article
Google Scholar
Elshakankiry NH, Mossallam GI, Madbouly A, Maiers M, El Haddad A, Kamel H (2017) P227 determination of HLA -A, -B and - DRB1 alleles and HLA-A -B haplotype frequencies in Egyptians based on family study. Hum Immunol 78:222. https://doi.org/10.1016/j.humimm.2017.06.287
Article
Google Scholar
Elbe S, Buckland-Merrett G (2017) Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall 1(1):33–46
Article
Google Scholar
Kandeil A, Mostafa A, El-Shesheny R, Shehata M, Roshdy WH, Ahmed SS, Gomaa M, El Taweel A, Kayed AE, Mahmoud SH (2020) Coding-complete genome sequences of two SARS-CoV-2 isolates from Egypt. Microbiol Resour Announc 9(22)
Nucleotide. Bethesda: National Library of Medicine (US), National Center for Biotechnology Information; [1988] (n.d.) Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/1798174254
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW (2020) Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. Nature 579(7798):265–269
Article
Google Scholar
CLUSTAL W (2008) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. In: Encyclopedia of genetics, genomics, proteomics and informatics. Springer Netherlands, pp 376–377. https://doi.org/10.1007/978-1-4020-6754-9_3188
Chapter
Google Scholar
Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol. https://doi.org/10.1093/molbev/msz312
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4. https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee S, Chakraborty C (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol 92(6):618–631
Article
Google Scholar
Enayatkhani M, Hasaniazad M, Faezi S, Gouklani H, Davoodian P, Ahmadi N, Einakian MA, Karmostaji A, Ahmadi K (2021) Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn 39(8):2857–2872. https://doi.org/10.1080/07391102.2020.1756411
Article
Google Scholar
Berman HM, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980
Article
Google Scholar
Burley SK, Berman HM et al (2019) RCSB protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47:D464–D474. https://doi.org/10.1093/nar/gky1004
Article
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242
Article
Google Scholar
Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK (2017) Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep 7(1):9232. https://doi.org/10.1038/s41598-017-09199-w
Article
Google Scholar
Knapp B, Deane CM (2016) T-cell receptor binding affects the dynamics of the peptide/MHC-I complex. J Chem Inf Model 56(1):46–53. https://doi.org/10.1021/acs.jcim.5b00511
Article
Google Scholar
Ayres CM, Corcelli SA, Baker BM (2017) Peptide and peptide-dependent motions in MHC proteins: immunological implications and biophysical underpinnings. Front Immunol 8:935) https://www.frontiersin.org/article/10.3389/fimmu.2017.00935
Article
Google Scholar
Huang Y, Yang C, Xu X, Xu W, Liu S (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41(9):1141–1149. https://doi.org/10.1038/s41401-020-0485-4
Article
Google Scholar
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
Article
Google Scholar
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444 LP–1441448. https://doi.org/10.1126/science.abb2762
Article
Google Scholar
Hulswit RJG, de Haan CAM, Bosch B-J (2016) Coronavirus spike protein and tropism changes. Adv Virus Res 96:29–57. https://doi.org/10.1016/bs.aivir.2016.08.004
Article
Google Scholar
Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27(1):119–129. https://doi.org/10.1038/cr.2016.152
Article
Google Scholar
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215–220. https://doi.org/10.1038/s41586-020-2180-5
Article
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y, Wang Q, Zhou H, Yan J, Qi J (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181(4):894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
Article
Google Scholar
Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S (2006) Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci 103(34):12885 LP–12812890. https://doi.org/10.1073/pnas.0603144103
Article
Google Scholar
Law AHY, Lee DCW, Cheung BKW, Yim HCH, Lau ASY (2007) Role for nonstructural protein 1 of severe acute respiratory syndrome coronavirus in chemokine dysregulation. J Virol 81(1):416–422. https://doi.org/10.1128/JVI.02336-05
Article
Google Scholar
Putics Á, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J (2005) ADP-ribose-1-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79(20):12721 LP–12712731. https://doi.org/10.1128/JVI.79.20.12721-12731.2005
Article
Google Scholar
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y, Rozanov M, Spaan WJM, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331(5):991–1004. https://doi.org/10.1016/s0022-2836(03)00865-9
Article
Google Scholar
Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirus replicase proteins in pathogenesis. Virus Res 133(1):88–100. https://doi.org/10.1016/j.virusres.2007.02.017
Article
Google Scholar
Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D, Titov A, Peshkova IO, Khmelevskaya A, Dianov DV, Malasheva M, Shmelev A, Serdyuk Y, Bagaev DV, Pivnyuk A, Shcherbinin DS, Maleeva AV, Shakirova NT, Pilunov A, Malko DB et al (2020) SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T-cell receptors. MedRxiv:2020.05.20.20107813. https://doi.org/10.1101/2020.05.20.20107813
Baruah V, Bose S (2020) Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 92(5):495–500
Article
Google Scholar
Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D, van Buuren MM, Addona TA, Rooney MS, Srinivasan L (2020) Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Med 12(1):1–15
Article
Google Scholar
Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A (2020) A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 27(4):671–680
Article
Google Scholar
Requena D, Médico A, Chacón RD, Ramírez M, Marín-Sánchez O (2020) Identification of novel candidate epitopes on SARS-CoV-2 proteins for south America: a review of HLA frequencies by country. Front Immunol 11:2008 https://www.frontiersin.org/article/10.3389/fimmu.2020.02008
Article
Google Scholar
Jain R, Jain A, Verma SK (2021) Prediction of epitope based peptides for vaccine development from complete proteome of novel corona virus (SARS-COV-2) using immunoinformatics. Int J Pept Res Ther 27(3):1729–1740. https://doi.org/10.1007/s10989-021-10205-z
Article
Google Scholar
Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM (2021) Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS One 16(3):e0248061. https://doi.org/10.1371/journal.pone.0248061
Article
Google Scholar