Huang W, Yao Y, Wang S, Xia Y, Yang X, Long Q, Sun W, Liu C, Li Y, Chu X (2016) Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci Rep 6:20724
Article
Google Scholar
Pazoki M, Astaneh SDA, Ramezanalizadeh F, Jahangiri A, Rasooli I (2021) Immunoprotectivity of valine–glycine repeat protein G, a potent mediator of pathogenicity, against Acinetobacter baumannii. Mol Immunol 135:276–284
Article
Google Scholar
Jahangiri A, Owlia P, Rasooli I, Salimian J, Derakhshanifar E, Aghajani Z, Abdollahi S, Khalili S, Talei D, Eslam ED (2021) Specific egg yolk immunoglobulin as a promising non-antibiotic biotherapeutic product against Acinetobacter baumannii pneumonia infection. Sci Rep 11(1):1–11
Article
Google Scholar
Rasooli I, Abdolhamidi R, Jahangiri A, Astaneh SDA (2020) Outer membrane protein, Oma87 prevents Acinetobacter baumannii infection. Int J Pept Res Ther March 9:1–8
Mahmoudi Z, Rasooli I, Jahangiri A, Darvish Alipour Astaneh S (2020) Prevention of nosocomial Acinetobacter baumannii infections with a conserved immunogenic fimbrial protein. APMIS
Eslam ED, Astaneh SDA, Rasooli I, Nazarian S, Jahangiri A (2020) Passive immunization with chitosan-loaded biofilm-associated protein against Acinetobacter baumannii murine infection model. Gene Rep 20 September:100708
Jahangiri A, Owlia P, Rasooli I, Salimian J, Derakhshanifar E, Naghipour Erami A, Darzi Eslam E, Darvish Alipour Astaneh S (2019) Specific egg yolk antibodies (IgY) confer protection against Acinetobacter baumannii in a murine pneumonia model. J Appl Microbiol 126(2):624–632
Article
Google Scholar
Bazmara H, Rasooli I, Jahangiri A, Sefid F, Astaneh SDA, Payandeh Z (2019) Antigenic properties of iron regulated proteins in Acinetobacter baumannii: an in silico approach. Int J Pept Res Ther 25(1):205–213
Article
Google Scholar
Jahangiri A, Rasooli I, Owlia P, Imani Fooladi AA, Salimian J (2018) Highly conserved exposed immunogenic peptides of Omp34 against Acinetobacter baumannii: an innovative approach. J Microbiol Methods 144(Supplement C):79–85. https://doi.org/10.1016/j.mimet.2017.11.008
Article
Google Scholar
Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J (2017) In silico design of an immunogen against Acinetobacter baumannii based on a novel model for native structure of outer membrane protein A. Microb Pathog 105:201–210
Article
Google Scholar
Singh R, Garg N, Shukla G, Capalash N, Sharma P (2016) Immunoprotective efficacy of Acinetobacter baumannii outer membrane protein, FilF, predicted in silico as a potential vaccine candidate. Front Microbiol 7(158). https://doi.org/10.3389/fmicb.2016.00158
Garg N, Singh R, Shukla G, Capalash N, Sharma P (2016) Immunoprotective potential of in silico predicted Acinetobacter baumannii outer membrane nuclease, NucAb. Int J Med Microbiol 306(1):1–9. https://doi.org/10.1016/j.ijmm.2015.10.005
Article
Google Scholar
Sefid F, Rasooli I, Jahangiri A, Bazmara H (2015) Functional exposed amino acids of BauA as potential immunogen against Acinetobacter baumannii. Acta Biotheor 63(2):129-49. https://doi.org/10.1007/s10441-015-9251-2
KuoLee R, Harris G, Yan H, Xu HH, Conlan WJ, Patel GB, Chen W (2015) Intranasal immunization protects against Acinetobacter baumannii-associated pneumonia in mice. Vaccine 33(1):260–267
Article
Google Scholar
Huang W, Wang S, Yao Y, Xia Y, Yang X, Long Q, Sun W, Liu C, Li Y, Ma Y (2015) OmpW is a potential target for eliciting protective immunity against Acinetobacter baumannii infections. Vaccine 33(36):4479–4485
Article
Google Scholar
Badmasti F, Ajdary S, Bouzari S, Fooladi AAI, Shahcheraghi F, Siadat SD (2015) Immunological evaluation of OMV (PagL)+ Bap (1-487aa) and AbOmpA (8-346aa)+ Bap (1-487aa) as vaccine candidates against Acinetobacter baumannii sepsis infection. Mol Immunol 67(2):552–558
Article
Google Scholar
Hosseingholi EZ, Rasooli I, Gargari SLM (2014) In silico analysis of Acinetobacter baumannii phospholipase D as a subunit vaccine candidate. Acta Biotheor 62(4):455–478
Article
Google Scholar
Lin L, Tan B, Pantapalangkoor P, Ho T, Hujer AM, Taracila MA, Bonomo RA, Spellberg B (2013) Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine 31(2):313–318
Article
Google Scholar
Luo G, Lin L, Ibrahim AS, Baquir B, Pantapalangkoor P, Bonomo RA, Doi Y, Adams MD, Russo TA, Spellberg B (2012) Active and passive immunization protects against lethal, extreme drug resistant-Acinetobacter baumannii infection. PLoS One 7(1):e29446
Article
Google Scholar
Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24(1):51–62
Article
Google Scholar
Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr (2013) Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 8(3):e59388
Article
Google Scholar
Wang J, Zhou Z, He F, Ruan Z, Jiang Y, Hua X, Yu Y (2018) The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One 13(2):e0192288
Article
Google Scholar
Repizo GD, Espariz M, Seravalle JL, Salcedo SP (2019) Bioinformatic analysis of the type VI secretion system and its potential toxins in the Acinetobacter genus. Front Microbiol 10:2519
Article
Google Scholar
Lewis JM, Deveson Lucas D, Harper M, Boyce JD (2019) Systematic identification and analysis of Acinetobacter baumannii type VI secretion system effector and immunity components. Front Microbiol 10:2440
Article
Google Scholar
Lopez J, Ly PM, Feldman MF (2020) The tip of the VgrG spike is essential to functional type VI secretion system assembly in Acinetobacter baumannii. MBio 11(1): e02761-19. https://doi.org/10.1128/mBio.02761-19
Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41(1):207–234
Article
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254
Article
Google Scholar
McConnell MJ, Martín-Galiano AJ (2021) Designing multi-antigen vaccines against Acinetobacter baumannii using systemic approaches. Front Immunol 12:1223
Article
Google Scholar
Masoumkhani S, Alipour Astaneh SD, Jahangiri A, Rasooli I (2020) Virulence-associated chromosome locus J, VacJ, an outer membrane lipoprotein elicits protective immunity against Acinetobacter baumannii infection in mice. Trends Med 20. https://doi.org/10.15761/TiM.1000236
Esmaeilkhani H, Rasooli I, Nazarian S, Sefid F (2016) In vivo validation of the immunogenicity of recombinant baumannii acinetobactin utilization a protein (rBauA). Microb Pathog 98:77–81
Article
Google Scholar
Fattahian Y, Rasooli I, Gargari SLM, Rahbar MR, Astaneh SDA, Amani J (2011) Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). Microb Pathog 51(6):402–406
Article
Google Scholar
Ramezanalizadeh F, Owlia P, Rasooli I (2020) Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 38(34):5436–5446
Article
Google Scholar
Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Balthasar JP, Russo TA (2017) The capsular polysaccharide of Acinetobacter baumannii is an obstacle for therapeutic passive immunization strategies. Infect Immun 85(12):e00591-17. https://doi.org/10.1128/IAI.00591-17