Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. JBJS 84(5):716–720
Article
Google Scholar
Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195
Article
Google Scholar
St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A (2003) Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop 32(1):18–23
Google Scholar
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461
Article
Google Scholar
Wang W, Yeung KW (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater 2(4):224–247
Article
Google Scholar
Lehmann G, Palmero P, Cacciotti I, Pecci R, Campagnolo L, Bedini R, Siracusa G, Bianco A, Camaioni A, Montanaro L (2010) Design, production and biocompatibility of nanostructured porous HAp and Si-HAp ceramics as three-dimensional scaffolds for stem cell culture and differentiation. Ceramics Silikaty 54(2):90–96
Google Scholar
Gordon T, Schloesser L, Humphries D, Spector M (2004) Effects of the degradation rate of collagen matrices on articular chondrocyte proliferation and biosynthesis in vitro. Tissue Eng 10(7-8):1287–1295
Article
Google Scholar
Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26(3):311–318
Article
Google Scholar
Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioactive Mater 3(1):129–138
Article
Google Scholar
Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632
Article
Google Scholar
Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51(4):586–595
Article
Google Scholar
Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279
Article
Google Scholar
Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363
Article
Google Scholar
Liu C, Xia Z, Czernuszka J (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064
Article
Google Scholar
Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841
Article
Google Scholar
Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2017) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Met Mater Minerals 16(1):37–44
Mahmoud AA, Salama AH (2016) Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci 83:155–165
Article
Google Scholar
Zhu C, Fan D, Duan Z, Xue W, Shang L, Chen F, Luo Y (2009) Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J Biomed Mater Res A 89(3):829–840
Article
Google Scholar
Zhu C, Fan D, Ma X, Xue W, Yu Y, Luo Y, Liu B, Chen L (2009) Effects of chitosan on properties of novel human-like collagen/chitosan hybrid vascular scaffold. J Bioact Compat Polym 24(6):560–576
Article
Google Scholar
Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82(2):307–315
Article
Google Scholar
Venkatesan J, Lowe B, Kim S-K (2015) Bone tissue engineering using functional marine biomaterials. In: Functional Marine Biomaterials. Elsevier, pp 53–61
Wang Y, Zhang L, Hu M, Liu H, Wen W, Xiao H, Niu Y (2008) Synthesis and characterization of collagen-chitosan-hydroxyapatite artificial bone matrix. J Biomed Mater Res A 86(1):244–252
Article
Google Scholar
Hench LL, Splinter RJ, Allen W, Greenlee T (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141
Article
Google Scholar
Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518
Article
Google Scholar
Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373
Article
Google Scholar
Andrade ÂL, Valério P, Goes AM, de Fátima LM, Domingues RZ (2006) Influence of morphology on in vitro compatibility of bioactive glasses. J Non-Cryst Solids 352(32-35):3508–3511
Article
Google Scholar
Hench L, Wheeler D, Greenspan D (1998) Molecular control of bioactivity in sol-gel glasses. J Sol-Gel Sci Technol 13:245–250
Article
Google Scholar
Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G (2019) Cerium oxide nanoparticles protect against oxidant injury and interfere with oxidative mediated kinase signaling in human-derived hepatocytes. Int J Mol Sci 20(23):5959
Article
Google Scholar
Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun: 10, 1056–1058
Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46(16):2736–2738
Article
Google Scholar
Du J, Kokou L, Rygel JL, Chen Y, Pantano CG, Woodman R, Belcher J (2011) Structure of cerium phosphate glasses: molecular dynamics simulation. J Am Ceram Soc 94(8):2393–2401
Article
Google Scholar
Leonelli C, Lusvardi G, Malavasi G, Menabue L, Tonelli M (2003) Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Non-Cryst Solids 316(2):198–216
Article
Google Scholar
Goh Y-F, Alshemary AZ, Akram M, Kadir MRA, Hussain R (2014) In-vitro characterization of antibacterial bioactive glass containing ceria. Ceram Int 40(1):729–737
Article
Google Scholar
Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J Mater Chem 22(27):13698–13706
Article
Google Scholar
Zhang J, Liu C, Li Y, Sun J, Wang P, Di K, Zhao Y (2010) Effect of cerium ion on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. J Rare Earths 28(1):138–142
Article
Google Scholar
Deliormanlı AM (2015) Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci Mater Med 26(2):67
Article
Google Scholar
Gupta B, Papke JB, Mohammadkhah A, Day DE, Harkins AB (2016) Effects of chemically doped bioactive borate glass on neuron regrowth and regeneration. Ann Biomed Eng 44(12):3468–3477
Article
Google Scholar
Nicolini V, Malavasi G, Menabue L, Lusvardi G, Benedetti F, Valeri S, Luches P (2017) Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties. J Mater Sci 52(15):8845–8857
Article
Google Scholar
Nicolini V, Varini E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P (2016) The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Mater Des 97:73–85
Article
Google Scholar
Placek L, Keenan T, Coughlan A, Wren A (2018) Investigating the effect of glass ion release on the cytocompatibility, antibacterial efficacy and antioxidant activity of Y2O3/CeO2-doped SiO2-SrO-Na2O glasses. Biomed Glasses 4(1):32–44
Article
Google Scholar
Farag MM, Al-Rashidy ZM, Ahmed MM (2019) In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci Mater Med 30(2):18
Article
Google Scholar
Zou X, Li H, Chen L, Baatrup A, Bünger C, Lind M (2004) Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2. Biomaterials 25(23):5375–5385
Article
Google Scholar
Chen CT, Shih YRV, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26(4):960–968
Article
Google Scholar
Ko E, Lee KY, Hwang DS (2012) Human umbilical cord blood–derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 21(11):1877–1886
Article
Google Scholar
Alves H, Munoz-Najar U, De Wit J, Renard AJ, Hoeijmakers JH, Sedivy JM, Van Blitterswijk C, De Boer J (2010) A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. J Cell Mol Med 14(12):2729–2738
Article
Google Scholar
Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PNN, Huang C-J, Cheong SK, Kamarul T (2014) Oxidative stress-induced premature senescence in Wharton’s jelly-derived mesenchymal stem cells. Int J Med Sci 11(11):1201
Article
Google Scholar
Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419
Article
Google Scholar
Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L, Vallet-Regi M (2013) Mesoporous bioactive scaffolds prepared with cerium-, gallium-and zinc-containing glasses. Acta Biomater 9(1):4836–4844
Article
Google Scholar
Deliormanlı AM (2015) Synthesis and characterization of cerium-and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci Mater Med 26(2):67
Article
Google Scholar
Deliormanlı AM (2016) Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications. Ceram Int 42(1):897–906
Article
Google Scholar
Ibrahim AM, Al-Rashidy ZM, Ghany NAA, Ahmed HY, Omar AE, Farag MM (2021) Bioactive and antibacterial metal implant composite coating based on Ce-doped nanobioactive glass and chitosan by electrophoretic deposition method. J Mater Res: 36, 1899–1913
Müller U (2008) In vitro biocompatibility testing of biomaterials and medical devices. Med Device Technol 19(2):30, 32–30, 34
Google Scholar
Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84(2):377–410
Article
Google Scholar
Xia W, Chang J (2007) Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater Lett 61(14):3251–3253
Article
Google Scholar
El-Kady AM, Saad EA, El-Hady BMA, Farag MM (2010) Synthesis of silicate glass/poly(l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation. Ceram Int 36(3):995–1009
Article
Google Scholar
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49
Article
Google Scholar
Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3):867–872
Article
Google Scholar
Friedenstein A, Chailakhyan R, Gerasimov U (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Prolif 20(3):263–272
Article
Google Scholar
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64(2):295–312
Article
Google Scholar
Zhou Z, Chen L (2008) Morphology expression and proliferation of human osteoblasts on bioactive glass scaffolds. Mater Sci Poland 26(3):506–516
Google Scholar
Xiong G, Luo H, Gu F, Zhang J, Hu D, Wan Y (2013) A novel in vitro three-dimensional macroporous scaffolds from bacterial cellulose for culture of breast cancer cells. J Biomater Nanobiotechnol 4(04):316
Article
Google Scholar
Kosaka T, Fukaya K-i, Tsuboi S, Pu H, Ohno T, Tsuji T, Namba M (1996) Comparison of various methods of assaying the cytotoxic effects of ethanol on human hepatoblastomaells (HUH-6 Line). Acta Med Okayama 50(3):151–156
Google Scholar
Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111(1):A3. B. 1–A3. B. 3
Article
Google Scholar
Ashuri M, Moztarzadeh F, Nezafati N, Hamedani AA, Tahriri M (2012) Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol–gel-derived bioactive glass for bone substitute applications. Mater Sci Eng C 32(8):2330–2339
Article
Google Scholar
Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C 29(1):335–340
Article
Google Scholar
Zhang E, Zou C, Yu G (2009) Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process. Mater Sci Eng C 29(1):298–305
Article
Google Scholar
Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Pérez-Amor M, Ylänen H, Hupa M (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med 13(12):1221–1225
Article
Google Scholar
Deliormanlı AM, Yıldırım M (2016) Sol-gel synthesis of 13-93 bioactive glass powders containing therapeutic agents. J Aust Ceramic Soc Vol 52(2):9–19
Google Scholar
Oliveira J, Correia R, Fernandes M (2002) Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials 23(2):371–379
Article
Google Scholar
Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO 2–P 2 O 5 quaternary system. Mater Sci Eng C 30(3):383–390
Article
Google Scholar
Idris SB, Dånmark S, Finne-Wistrand A, Arvidson K, Albertsson A-C, Bolstad AI, Mustafa K (2010) Biocompatibility of polyester scaffolds with fibroblasts and osteoblast-like cells for bone tissue engineering. J Bioact Compat Polym 25(6):567–583
Article
Google Scholar
Silva GA, Marques A, Gomes ME, Coutinho O, Reis RL (2004) Cytotoxicity screening of biodegradable polymeric systems. In: Biodegradable Systems in Tissue Engineering and Regenerative Medicine. CRC Press, Boca Raton, pp 339–349
Google Scholar
Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J (2004) Biocompatibility of various Collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Implants Res 15(4):443–449
Article
Google Scholar
Cho JH, Kim S-H, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly (N-isopropylacrylamide) and water-soluble Chitosan copolymer. Biomaterials 25(26):5743–5751
Article
Google Scholar
Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27(3):406–418
Article
Google Scholar
Hoppe A, Boccardi E, Ciraldo F, Boccaccini A, Hill R (2017) Bioactive glass-ceramics. Comprehensive Biomaterials II, 1:235–43
Chen Q, Efthymiou A, Salih V, Boccaccini AR (2008) Bioglass®-derived glass–ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res A 84(4):1049–1060
Article
Google Scholar
Muzzarelli RA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182
Article
Google Scholar
Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177
Article
Google Scholar
Kamal AF, Iskandriati D, Dilogo IH, Siregar NC, Hutagalung EU, Susworo R, Yusuf AA, Bachtiar A (2013) Biocompatibility of various hydoxyapatite scaffolds evaluated by proliferation of rat’s bone marrow mesenchymal stem cells: an in vitro study. Med J Indones 22(4):202–208
Article
Google Scholar
Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 20(40):8912–8919
Article
Google Scholar
Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150
Article
Google Scholar