Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z et al (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91–105. https://doi.org/10.1186/1471-2229-13-91
Article
Google Scholar
Sharrock RA, Mathews S (2006) Phytochrome genes in higher plants: structure, expression, and evolution. In: Photomorphogenes in plants and bacteria. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/1-4020-3811-9_7
Chapter
Google Scholar
Watanabe S, Hideshima R, Zhengjun X, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262. https://doi.org/10.1534/Genetics.108.098772
Article
Google Scholar
Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci. https://doi.org/10.3389/Fpls.2015.00207
Cronk Q, Ojeda I, Pennington RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103. https://doi.org/10.1016/j.Pbi.2006.01.01
Article
Google Scholar
Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD andPHYE. Plant Mol Biol 25:413–427. https://doi.org/10.1007/BF00043870
Article
Google Scholar
Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757. https://doi.org/10.1101/Gad.3.11.1745
Article
Google Scholar
Bernard RL (1971) Two major genes for time of flowering and maturity in soybeans 1. Crop Sci 11:242–244. https://doi.org/10.2135/Cropsci1971.0011183X001100020022x
Article
Google Scholar
Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232. https://doi.org/10.1590/S1415-47571999000200016
Article
Google Scholar
Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent daylength conditions. Can J Genet Cytol 13:703–707. https://doi.org/10.1139/G71-100
Article
Google Scholar
Buzzell RI, Voldeng HD (1980) Research notes: inheritance of insensitivity to long daylength. Soybean Genet Newsl 7:26–28
Google Scholar
Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701. https://doi.org/10.2135/Cropsci2001.413698x
Article
Google Scholar
Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527. https://doi.org/10.2135/Cropsci2009.04.0174
Article
Google Scholar
McBlain BA, Bernard RL, Cremeens CR, Korczak JF (1987) A procedure to identify genes affecting maturity using soybean isoline testers1. Crop Sci 27:1127–1132. https://doi.org/10.2135/Cropsci1987.0011183X002700060008x
Article
Google Scholar
Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci 109:E2155–E2164. https://doi.org/10.1073/Pnas.1117982109
Article
Google Scholar
Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24. https://doi.org/10.1093/Jxb/Erp304
Article
Google Scholar
Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics 180:995–1007. https://doi.org/10.1534/Genetics.108.092742
Article
Google Scholar
Cober ER, Tanner JW, Voldeng HD (1996) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36:606–610. https://doi.org/10.2135/Cropsci1996.0011183X003600030014x
Article
Google Scholar
Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus Vulgaris). J Hered 99:283–291. https://doi.org/10.1093/Jhered/Esn005
Article
Google Scholar
Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T et al (2010) Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231. https://doi.org/10.1104/Pp.110.160796
Article
Google Scholar
Maass BL, Knox MR, Venkatesha SC, Angessa TT, Ramme S, Pengelly BC (2010) Lablab purpureus—a crop lost for Africa? Trop Plant Biol 3:123–135. https://doi.org/10.1007/S12042-010-9046-1
Article
Google Scholar
Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P (2020) Developments and prospects in imperative underexploited vegetable legumes breeding: a review. Int J Mol Sci 21:9615. https://doi.org/10.3390/Ijms21249615
Article
Google Scholar
Modha K, Kale B, Borwal D, Ramtekey V, Arpit B (2019) Inheritance pattern of photoperiod responsive flowering, growth habit and flower colour in indian bean [Lablab Purpureus (L.) Sweet.]. Electron J Plant Breed 10:297. https://doi.org/10.5958/0975-928X.2019.00037.1
Article
Google Scholar
Ramtekey V, Bhuriya A, Ayer D, Parekh V, Modha K, Kale B, Vadodariya G et al (2019) Molecular tagging of photoperiod responsive flowering in indian bean [Lablab Purpureus (L.) Sweet]. Indian J Genet Plant Breed 79:264–269. https://doi.org/10.31742/IJGPB.79S.1.17
Article
Google Scholar
Kaldate S, Patel A, Modha K, Parekh V, Kale B, Vadodariya G, Patel R (2021) Allelic characterization and protein structure analysis reveals the involvement of splice site mutation for growth habit differences in Lablab purpureus (L.) sweet. J Genet Eng Biotechnol 19:34. https://doi.org/10.1186/S43141-021-00136-Z
Article
Google Scholar
Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, Capel C, Yuste-Lisbona FJ et al (2019) Parallel origins of photoperiod adaptation following dual domestications of common bean. J Exp Bot 70:1209–1219. https://doi.org/10.1093/Jxb/Ery455
Article
Google Scholar
Doyle JJ, Doyle JLA (1987) Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Google Scholar
Hall TA (1999) A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389
Article
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/Molbev/Msy096
Article
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Higgins DG et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Article
Google Scholar
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
Article
Google Scholar
Felsenstein (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Article
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335
Article
Google Scholar
Aman Beshir J, Kebede M (2021) In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h. J Genet Eng Biotechnol 19:8. https://doi.org/10.1186/s43141-020-00097-9
Article
Google Scholar
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene Identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506. https://doi.org/10.1093/Nar/Gki937
Article
Google Scholar
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. https://doi.org/10.1093/bioinformatics/8.3.275
Article
Google Scholar
Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232. https://doi.org/10.1093/nar/gkn808
Article
Google Scholar
Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T, Krezhova D (2011) Positional cloning of the responsible genes for maturity loci E1, E2 and E3 in Soybean. In: Soybean―Genetics Nov. Tech. Yield Enhanc
Google Scholar
Dhanasekar P, Reddy KS (2015) A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics 290:55–65. https://doi.org/10.1007/S00438-014-0899-0
Article
Google Scholar
Kim SE, Okubo H (1995) Control of growth habit in determinate lablab bean (Lablab purpureus) by temperature and photoperiod. Sci Hortic 61(3-4):147–155
Article
Google Scholar
Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T, Kong F et al (2013) Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3:117–134. https://doi.org/10.3390/Agronomy3010117
Article
Google Scholar
Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB (2004) A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of Phytochrome A. Plant Physiol 135:2186–2195. https://doi.org/10.1104/Pp.103.036103
Article
Google Scholar
Zhang Y, Sun J, Xia H, Zhao C, Hou L, Wang B, Li A et al (2018) Characterization of peanut phytochromes and their possible regulating roles in early peanut pod development. PLoS One 13:5. https://doi.org/10.1371/Journal.Pone.0198041
Article
Google Scholar
Hwang WJ, Ha J, Lee T, Jeong H, Kim MY, Kim SK, Lee Y-H et al (2017) A candidate flowering gene in mungbean is homologous to a soybean phytochrome a gene. Euphytica 213:79. https://doi.org/10.1007/S10681-017-1866-8
Article
Google Scholar
Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718. https://doi.org/10.1126/Science.269.5231.1714
Article
Google Scholar
Opperdoes (2003) Phylogenetic analysis using protein sequences. In: Phylogenetics Handb. A Pract. Approach to DNA Protein Phylogeny
Google Scholar
McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184. https://doi.org/10.1186/1471-2164-11-184
Article
Google Scholar
Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B et al (2019) The draft genomes of five agriculturally important African orphan crops. Gigascience 8:3. https://doi.org/10.1093/Gigascience/Giy152
Article
Google Scholar
Wang Z, Yang R, Devisetty UK, Maloof JN, Zuo Y, Li J, Shen Y et al (2017) The divergence of flowering time modulated by FT/TFL1 is independent to their interaction and binding activities. Front Plant Sci 8:697. https://doi.org/10.3389/Fpls.2017.00697
Article
Google Scholar
Pham VN, Kathare PK, Huq E (2017) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038. https://doi.org/10.1104/pp.17.01384
Article
Google Scholar
Hanano S, Stracke R, Jakoby M, Merkle T, Domagalska MA, Weisshaar B, Davis SJ (2008) A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters. BMC Genomics 9:182. https://doi.org/10.1186/1471-2164-9-182
Article
Google Scholar
Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52(10):1709–1718. https://doi.org/10.1093/pcp/pcr118
Article
Google Scholar
Oide M, Nakasako M (2021) Red light-induced structure changes in phytochrome A from Pisum sativum. Sci Rep 11:2827. https://doi.org/10.1038/S41598-021-82544-2
Article
Google Scholar
Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858. https://doi.org/10.1146/Annurev.Arplant.56.032604.144208
Article
Google Scholar
Cheng M-C, Kathare PK, Paik I, Huq E (2021) Phytochrome signaling networks. Annu Rev Plant Biol 72:217–244. https://doi.org/10.1146/Annurev-Arplant-080620-024221
Article
Google Scholar