Lotz C, Muellenbach RM, Meybohm P, Mutlak H, Lepper PM, Rolfes C, Peivandi A, Stumpner J, Kredel M, Kranke P, Torje I, Reyher C (2021) Effects of inhaled nitric oxide in COVID-19–induced ARDS – Is it worthwhile? Acta Anaesthesiol Scand 65(5):629–632. Available from: doi. https://doi.org/10.1111/aas.13757
Article
Google Scholar
AbdelMassih AF, Ye J, Kamel A, Mishriky F, Ismail HA, Ragab HA, El Qadi L, Malak L, Abdu M, El-Husseiny M, Ashraf M, Hafez N, AlShehry N, El Husseiny N, AbdelRaouf N, Shebl N, Hafez N, Youssef N, Afdal P, Hozaien R, Menshawey R, Saeed R, Fouda R (2020) A multicenter consensus: a role of furin in the endothelial tropism in obese patients with COVID-19 infection. Obes Med 19:100281. https://doi.org/10.1016/j.obmed.2020.100281
Article
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Muller MA, Drosten C, Pohlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8
Article
Google Scholar
Akerstrom S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist A, Mirazimi A. 2005 Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79(3):1966–69. Available from: https://doi.org/10.1128/JVI.79.3.1966-1969.2005
Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G, Van Ranst M (2004) Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int J Infect Dis 8(4):223–226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971204000529. https://doi.org/10.1016/j.ijid.2004.04.012
Article
Google Scholar
Klingstrom J, Akerstrom S, Hardestam J, Stoltz M, Simon M, Falk KI, Mirazimi A, Rottenberg M, Lundkvist A. 2006 Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. Eur J Immunol 36(10):2649–57. Available from: https://doi.org/10.1002/eji.200535587
Lei C, Su B, Dong H, Bellavia A, Di Fenza R, Fakhr BS, Gianni S, Grassi LG, Pinciroli R, Vassena E, Berra L. 2020 Protocol of a randomized controlled trial testing inhaled Nitric Oxide in mechanically ventilated patients with severe acute respiratory syndrome in COVID-19 (SARS-CoV-2). medRxiv Prepr Serv Health Sci. Preprint at https://doi.org/10.1101/2020.03.09.20033530
Akaberi D, Krambrich J, Ling J, Luni C, Hedenstierna G, Jarhult JD, Lennerstrand J, Lundkvist A (2020) Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol 37:101734 Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213231720309393
Article
Google Scholar
Zell R, Markgraf R, Schmidtke M, Gorlach M, Stelzner A, Henke A, Sigusch HH, Glck B. 2004 Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice. Med Microbiol Immunol;193(2–3):91–100. Available from: https://doi.org/10.1007/s00430-003-0198-6
Regev-Shoshani G, Vimalanathan S, McMullin B, Road J, Av-Gay Y, Miller C Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric oxide Biol Chem 31:48–53 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23562771
Rimmelzwaan GF, Baars MM, de Lijster P, Fouchier RA, Osterhaus AD (1999) Inhibition of influenza virus replication by nitric oxide. J Virol 73(10):8880–8883 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10482647
Article
Google Scholar
Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LK, Liao CL (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71(7):5227–5235 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9188590
Article
Google Scholar
Banerjee NS, Moore DW, Wang HK, Broker TR, Chow LT (2019) NVN1000, a novel nitric oxide-releasing compound, inhibits HPV-18 virus production by interfering with E6 and E7 oncoprotein functions. Antiviral Res 170:104559 Available from: http://www.ncbi.nlm.nih.gov/pubmed/104559
Article
Google Scholar
Tang DJ, Xu YH, Dai D, Han YJ, Wang BC, Lang YM, Liang Y, Zeng Y (1989) Clinical analysis of four Chinese hemophiliacs with human immunodeficiency virus infection. Chin Med J 102(11):819–824 Available from: http://www.ncbi.nlm.nih.gov/pubmed/2517721
Google Scholar
Takhampunya R, Padmanabhan R, Ubol S. 2006 Antiviral action of nitric oxide on dengue virus type 2 replication. J Gen Virol 87(10):3003–11. Available from: https://doi.org/10.1099/vir.0.81880-0
Croen KD (1993) Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91(6):2446–2452 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8390481
Article
Google Scholar
Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide. Immunity 10(1):21–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761300800035. https://doi.org/10.1016/S1074-7613(00)80003-5
Article
Google Scholar
Simon M, Falk KI, Lundkvist A, Mirazimi A (2006) Exogenous nitric oxide inhibits Crimean Congo hemorrhagic fever virus. Virus Res 120(1–2):184–190. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016817020600092X. https://doi.org/10.1016/j.virusres.2006.03.005
Article
Google Scholar
Domachowske JB. 2003 Replication of respiratory syncytial virus is inhibited in target cells generating nitric oxide in situ. Front Biosci 8(1):986. Available from: https://doi.org/10.2741/986
Bi Z, Reiss CS (1995) Inhibition of vesicular stomatitis virus infection by nitric oxide. J Virol 69(4):2208–2213. https://doi.org/10.1128/jvi.69.4.2208-2213.1995
Article
Google Scholar
Ormerod AD, White MI, Shah SA, Benjamin N (1999) Molluscum contagiosum effectively treated with a topical acidified nitrite, nitric oxide liberating cream. Br J Dermatol 141(6):1051–1053 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10606851
Article
Google Scholar
Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D (1998) Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 72(2):934–942 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9444985
Article
Google Scholar
Griffon B, Cillard J, Chevanne M, Morel I, Cillard P, Sergent O. 1998 Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release. Hepatology 28(5):1300–08. Available from: https://doi.org/10.1002/hep.510280519
Lei C, Su B, Dong H, Fakhr BS, Grassi LG, Di Fenza R, Gianni S, Pinciroli R, Vassena E, Morais CCA, Bellavia A, Spina S, Kacmarek R, Berra L. 2020 Protocol for a randomized controlled trial testing inhaled nitric oxide therapy in spontaneously breathing patients with COVID-19. medRxiv Prepr Serv Health Sci. Preprint at https://doi.org/10.1101/2020.03.10.20033522
Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267(23):16396–16402. https://doi.org/10.1016/S0021-9258(18)42016-9
Article
Google Scholar
Yamada M, Hayashi H, Yuuki M, Matsushima N, Yuan B, Takagi N (2018) Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci Rep 8(1):1–9
Google Scholar
Li H, Zhang LK, Li SF, Zhang SF, Wan WW, Zhang YL, Xin QL, Dai K, Hu YY, Wang ZB, Zhu XT, Fang YJ, Cui N, Zhang PH, Yuan C, Lu Q, Bai JY, Deng F, Xiao GF, Liu W, Peng K. Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Res 2019;29(9):739–753. Available from: https://doi.org/10.1038/s41422-019-0214-z
Van Hove CE, Van der Donckt C, Herman AG, Bult H, Fransen P (2009) Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells. Br J Pharmacol 158(3):920–930 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19788496
Article
Google Scholar
Argyropoulos KV, Serrano A, Hu J, Black M, Feng X, Shen G, Call M, Kim MJ, Lytle A, Belovarac B, Vougiouklakis T, Lin LH, Moran U, Heguy A, Troxel A, Snuderl M, Osman I, Cotzia P, Jour G (2020) Association of initial viral load in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients with outcome and symptoms. Am J Pathol 190(9):1881–1887 Available from: https://linkinghub.elsevier.com/retrieve/pii/S000294402030328X
Article
Google Scholar
Silva J, Lucas C, Sundaram M, Israelow B, Wong P, Klein J, Tokuyama M, Lu P, Venkataraman A, Liu F, Mao T, Oh JE, Park A, Casanovas-Massana A, CBF V, Muenker CM, Zell J, Fournier JB, Campbell M, Chiorazzi M, Ruiz Fuentes E, Petrone M, Kalinich CC, Ott IM, Watkins A, Moore AJ, Nakahata MI, Grubaugh ND, Farhadian S, Dela Cruz C, Ko A, Schulz WL, Ring AM, Ma S, Omer S, Wyllie AL, Iwasaki A (2021) Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv Prepr Serv Health Sci Available from: http://www.ncbi.nlm.nih.gov/pubmed/33442706