
SHORT COMMUNICATIONS Open Access

The potential role of inhaled nitric oxide for
postexposure chemoprophylaxis of COVID-
19
Antoine AbdelMassih1,2* , Rafeef Hozaien3, Meryam El Shershaby3, Aya Kamel3, Habiba-Allah Ismail3,
Mariem Arsanyous3, Nadine El-Husseiny4,5, Noha Khalil3, Youstina Naeem3 and Raghda Fouda6

Abstract

Background: Several vaccines have been fast-tracked in an attempt to decrease the morbidity and mortality of
COVID-19. However, post-exposure prophylaxis has been overlooked in battling COVID-19.

Main text: Inhaled nitric oxide is a potential tool in post-exposure prophylaxis of COVID-19. It decreases cytosolic
calcium levels, which impairs the action of Furin. SARS-CoV-2 uses Furin to replicate in the respiratory tract.

Short conclusion: Inhaled nitric oxide could decrease the viral load in the upper respiratory tract, abort clinically
symptomatic infection, and prevent subsequent complications. Nitric oxide might be a tool for post-exposure
chemoprophylaxis in at-risk groups, especially medical personnel.

Background
SaNOtize (Canada, Vancouver-based/NCT04443868 bio-
tech firm) recently created a self-administered nitric oxide
nasal spray (NONS) that could potentially reduce corona-
virus disease 2019 (COVID-19) viral load in infected patients.
After completing early-stage clinical trials in Canada and the
United Kingdom (UK), SaNOtize, Ashford and St. Peter’s
Hospitals, the National Hospital System (NHS) foundation,
and a few pathology services in the UK announced the re-
sults of phase II trials. The results indicate that NONS can
be a powerful and safe antiviral treatment. It could prevent
COVID-19 transmission, shorten its duration, and reduce
the severity of its symptoms.
Some reports have discussed the use of nitric oxide

against COVID-19. Lotz et al., for example, highlighted
its potential to improve acute respiratory distress syn-
drome in COVID-19.

However, SaNOtize’s clinical trial results suggest that it
has a much earlier antiviral role against COVID-19. We will
discuss the exact mechanism behind this in this report [1].

Main text
Protease is critical to determine the viral load of COVID-
19
Furin is a member of the PCSK (pro-protein convertase sub-
tilizing/Kexin) family. Furin is a type 1 membrane-bound
protease utilized by multiple pathogens including human im-
mune deficiency virus (HIV), Ebola virus, Marburg virus, se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), and even some bacterial toxins. Pathogenicity can in-
crease several folds once they react with Furin and other
pro-protein convertases. After Furin is cleaved, latent precur-
sor proteins are activated. Hence, Furin-dependent infections
may respond to therapeutics targeting host cell Furin [2].
The spike protein of SARS-CoV-2 is the cleavage site

of Furin. It plays an essential role in the pathogenesis,
host range, and infectivity of the virus. Furin requires a
polybasic instead of a monobasic cleavage site. Hence,
cleavage occurs at the junction of the two polybasic,
spike protein subunits (S1 and S2). High virulence and
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Table 1 Review of in vivo and in vitro studies of the antiviral effect of nitric oxide

Reference
number in
text

Virus Type of nitric oxide
therapy

Study model Main outcome

[4, 5] SARS-CoV NO donor, SNAP In vitro Inhibited SARS CoV replication cycle in a concentration-
dependent manner (1)

NO donors, SNAP
and SNP

In vitro SNAP and SNP inhibited the SARS CoV viral cytopathic effect
(2)

[7, 8] SARS-CoV-2 inhaled NO Multicenter randomized
controlled trial

Ongoing, antiviral effect of high concentrations of inhaled
NO administered during early phases of COVID-19 on spon-
taneous breathing patients, effect on disease progression (3)

Ongoing, testing inhaled Nitric Oxide in mechanically
ventilated patients with severe acute respiratory syndrome in
COVID-19 (SARS-CoV-2) (4)

Single-center, randomized
(1:1) controlled, parallel-arm
clinical trial

Ongoing, prophylactic therapy to reduce the instance of
COVID-19 disease in healthcare workers (4)

SNAP In vitro SNAP delayed or completely prevented the development of
viral cytopathic effect (5)

[9] Coxsackievirus NO donors SNAP In vitro
Murine model

NO inhibits CVB3 replication by inhibiting protease activity
and interrupting the viral life cycle (6)

iNO, SNAP NO inhibits CVB3 replication in part by inhibiting viral RNA
and protein synthesis (7)

NO donors
SNAP, PFC, GTN,
ISDN)

In vitro NO showed inhibition of the 2A proteinase activity
CVB3-infected mice showed significantly reduced signs of
myocarditis after treatment with GTN or ISDN (8)

[10, 11] Influenza Gaseous nitric oxide
(gNO)

In vitro Viral NA inhibition by gNO was shown and may be
responsible for this antiviral effect (9)

SNAP inhibition of influenza virus viral RNA synthesis (10)

[12] Japanese
encephalitis virus
(JEV)

SNAP In vitro NO was found to profoundly inhibit viral RNA synthesis, viral
protein accumulation, and virus release from infected cells
(11)

MDF to produce NO
(inducible NO)

In vitro and murine model MDF stimulated macrophages inhibited virus replication with
high levels of NO production. MDF treatment increased the
survival rate of JEV infected mice (12)

[22] Rhinovirus Nitric oxide donor
(NONOate)

In vitro (NONOate) inhibited both rhinovirus replication and cytokine
production in a dose-dependent fashion without reducing
levels of cytokine mRNA (13)

[14] Reovirus iNO In vitro Cytostatic effects antiviral effects e.g. reduction in DNA
synthesis, protein synthesis & mitochondrial metabolism (14)

[15] Dengue virus
(DENV)

SNAP In vitro NO showed an inhibitory effect on viral RNA synthesis. The
activity of the viral replicase was suppressed significantly (15)

[16] Herpes simplex
virus type 1 (HSV 1)

Nitric oxide had inhibitory effects on HSV1 protein and DNA
synthesis as well as on cell replication (16)

[17] Porcine circovirus
type 2 (PCV2)

NO generated from
(GSNO)

In vivo, in vitro (Murine
model)

NO strongly inhibited PCV2 replication in vitro. NO reduced
the progression of PCV2 infection in mice (17)

[18] Crimean Congo
hemorrhagic fever
virus (CCHFV)

SNAP In vitro NO reduced virion progeny yield with a reduction in
expression of viral proteins; the nucleocapsid protein and the
glycoprotein, and vRNA (18)

[19] Respiratory
Syncytial Virus (RSV)

iNO , SNAP In vitro NO has significant direct antiviral activity against RSV, which
is more potent with continuous, endogenous NO production
than exogenous NO (19)

[13] Human
papillomaviruses
(HPVs)

NVN1000, Topical
NO-releasing
polymer

In vitro NO abrogated HPV-18 progeny virus production. Reduced
HPV-18 E6 and E7 oncoproteins. Impaired S-phase progres-
sion and induced DNA damage in infected cultures (20)

[20] Vesicular stomatitis
virus (VSV)

iNO, SNAP In vitro anti-VSV effects of NO in form of significant inhibition of
productive VSV infection (21)

[21] Molluscum Topical acidified A double-blind, group- 75% cure rate in the active treatment group
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low virulence influenza strains have different pathoge-
nicities and are an excellent example of the relationship
between viral pathogenicity and cleavage sites [3].

Nitric oxide is an inhibitor of viral proteases and
subsequently of viral replication
Previous studies have noted that the antiviral role of ni-
tric oxide is due to its inhibition of viral protease activ-
ity. It also prohibits viral replication. In a study, several
viruses demonstrated the mechanism behind this
phenomenon. These included coxsackievirus, picornavi-
ruses, hantavirus, herpesvirus, rhinovirus, Japanese en-
cephalitis, vaccinia, retrovirus, and many more (Table 1
exposes the clinical and laboratory trials which used NO
as an antiviral agent) [4–24].

Nitric oxide inhibits viral protease activity by decreasing
intracellular cations
Furin is a cellular protease enzyme expressed from the
FURIN gene in humans. Furin shows an intriguing inter-
play between intracellular ions, especially cations. Potas-
sium ions are the most common intracellular ions in our
bodies, followed by magnesium—which can activate
Furin directly. Molloy et al. noted that the intracellular
calcium level noticeably influences the activity of Furin.
Thus, Furin is a calcium-dependent enzyme [25].
Yamada and colleagues further supported the relation-

ship between Furin and calcium levels. Inhibiting Furin
prevented further neuronal damage caused by calcium
influx after hypoxic injury [26]. Hence, impeding cal-
cium channels can be a promising approach against
Furin-activated organisms. Additionally, Li et al. stated
in 2019 that calcium channel blockers (CCB) decrease
the intensity of fever spikes and the occurrence of
thrombocytopenia syndrome, categorized by manifesta-
tions of tick-borne hemorrhagic fever [27].
Nitric oxide encourages calcium efflux from cells, lead-

ing to decreased intracellular calcium levels. Van Hove

et al. demonstrated this and proved that nitric oxide
stimulates smooth muscle cells (SMCs) to relax directly
or indirectly by decreasing the elevated calcium level
[28]. As such, nitric oxide could inhibit Furin’s action by
decreasing cytosolic levels of calcium.

Inhaled nitric oxide as post-exposure prophylaxis
Argyropoulos et al. concluded that a diagnostic viral load
has no prognostic value [29]. While in a more recent re-
port, Silva et al. found the saliva viral loads to be signifi-
cantly higher in patients with chronic respiratory
conditions, cardiovascular conditions, kidney disease,
and diseases that compromise the immune system [30].
Patients with four or more risk factors had much higher
saliva viral loads than patients with fewer risk factors, as
did male patients. However, there was no relation be-
tween nose and throat viral loads and risk factors. Saliva
viral loads were also higher in patients with worse clin-
ical outcomes. As such, early interruption of viral repli-
cation in the upper respiratory tract might abort the
development of significant symptoms and complications.
This rationale might have led to the current inclusion
criteria of SaNOtize’s ongoing clinical trial, which in-
volves administration of the intranasal medication within
48 h of a diagnosis. SaNOtize could potentially be ad-
ministered to medical personnel as post-exposure
chemoprophylaxis.

Conclusion
Early reports of the role of nitric oxide in the treatment
of COVID-19 suggested its use for the treatment of
established acute respiratory distress syndrome. How-
ever, nitric oxide seems to have a much earlier and more
efficient prophylactic role. It inhibits Furin, a protease
needed for canonical viral replication of SARS-CoV-2,
by decreasing cytosolic calcium levels. This action can
prevent the exponential increase of viral load in the
upper respiratory tract leading to the abortion of

Table 1 Review of in vivo and in vitro studies of the antiviral effect of nitric oxide (Continued)

Reference
number in
text

Virus Type of nitric oxide
therapy

Study model Main outcome

contagiosum nitrite, nitric oxide
liberating cream)

sequential clinical trial NO is an effective therapy with a 75% cure rate in the
treatment group compared to 21% in the control group (22)

topical SB206 (NO
releasing topical gel)

multicenter, randomized,
double-blind, vehicle-
controlled clinical trial

SB206 is an effective therapy with (SB206 12% / once daily)
provided the best balance between MC lesion clearance and
tolerability (22)

[6] Hantavirus iNO, SNAP In vitro, murine model NO strongly inhibited hantavirus replication in vitro. The viral
titers in iNOS–/– mice were higher compared to the controls,
suggesting that NO inhibits hantavirus replication in vivo (23)

Abbreviations: NO nirtic oxide, SNAP S-nitroso-N-acetylpenicillamine, GTN glyceryl trinitrate, ISDN isosorbide dinitrate, PFC: 4-phenyl-3-furoxancarbonitrile, iNO
inducible NO, CVB3 coxsackievirus B3, gNO gaseous nitric oxide, NA neuraminidase, JEV Japanese encephalitis virus, MDF macrophage-derived neutrophil
chemotactic factor, NONOate 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine, HSV1 herpes simplex virus type 1, DENV dengue virus, PCV2 porcine
circovirus type 2, GSNO S-nitrosoglutathione, CCHFV Crimean Congo hemorrhagic fever virus, RSV respiratory syncytial virus, VSV vesicular stomatitis virus
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clinically symptomatic infection and subsequent compli-
cations. Nitric oxide could be a tool for post-exposure
chemoprophylaxis in the at-risk groups, especially med-
ical personnel.
Figure 1 summarizes the antiviral effect of nitric oxide

and its possible uses in the context of COVID-19.

Abbreviations
CCB: Calcium channel blocker; COVID-19: Coronavirus 2019; NHS: National
Hospital System; NO: Nitric oxide; NONS: Nitric oxide nasal spray; SARS-CoV-
2: Severe acute respiratory syndrome coronavirus 2; UK: United Kingdom
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