WHO, U (2016) World malaria report. World Health Organization, pp 1–186
Organization, WH (2018) High burden to high impact: a targeted malaria response. World Health Organization
Beare NA et al (2006) Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg 75(5):790–797. https://doi.org/10.4269/ajtmh.2006.75.790
Article
Google Scholar
Jones TR, Hoffman SL (1994) Malaria vaccine development. Clin Microbiol Rev 7(3):303–310. https://doi.org/10.1128/CMR.7.3.303
Article
Google Scholar
Coelho CH et al (2017) Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines 2(1):34
Article
Google Scholar
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S (2015) Recent advances in recombinant protein-based malaria vaccines. Vaccine 33(52):7433–7443. https://doi.org/10.1016/j.vaccine.2015.09.093
Article
Google Scholar
Ouattara A, Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV (2015) Designing malaria vaccines to circumvent antigen variability. Vaccine 33(52):7506–7512. https://doi.org/10.1016/j.vaccine.2015.09.110
Article
Google Scholar
Beeson JG et al (2019) Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 11(474)
Rts S (2015) Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45
Article
Google Scholar
Radtke AJ, Tse SW, Zavala F (2015) From the draining lymph node to the liver: the induction and effector mechanisms of malaria-specific CD8+ T cells. Semin Immunopathol 37(3):211–220. https://doi.org/10.1007/s00281-015-0479-3
Article
Google Scholar
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511. https://doi.org/10.1038/nature01097
Article
Google Scholar
Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M (2019) Progression of the canonical reference malaria parasite genome from 2002–2019. Wellcome Open Res 4. https://doi.org/10.12688/wellcomeopenres.15194.1
Briquet S, Ourimi A, Pionneau C, Bernardes J, Carbone A, Chardonnet S, Vaquero C (2018) Identification of Plasmodium falciparum nuclear proteins by mass spectrometry and proposed protein annotation. PLoS One 13(10):e0205596. https://doi.org/10.1371/journal.pone.0205596
Article
Google Scholar
Tang Y, Meister TR, Walczak M, Pulkoski-Gross MJ, Hari SB, Sauer RT, Amberg-Johnson K, Yeh E (2019) A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol 17(2):e3000136. https://doi.org/10.1371/journal.pbio.3000136
Article
Google Scholar
Bharat Siva Varma P, Adimulam YB, Kodukula S (2015) In silico functional annotation of a hypothetical protein from Staphylococcus aureus. J Infect Public Health 8(6):526–532. https://doi.org/10.1016/j.jiph.2015.03.007
Article
Google Scholar
Mohan R, Venugopal S (2012) Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus. Bioinformation 8(15):722–728. https://doi.org/10.6026/97320630008722
Article
Google Scholar
Verma A, Singh VK, Gaur S (2016) Computational based functional analysis of Bacillus phytases. Comput Biol Chem 60:53–58. https://doi.org/10.1016/j.compbiolchem.2015.11.001
Article
Google Scholar
Shahbaaz M et al (2015) In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Comput Biol Chem 59(Pt A):67–80
Article
Google Scholar
Islam MS, Shahik SM, Sohel M, Patwary NIA, Hasan MA (2015) In silico structural and functional annotation of hypothetical proteins of Vibrio cholerae O139. Genomics Inform 13(2):53–59. https://doi.org/10.5808/GI.2015.13.2.53
Article
Google Scholar
Pritam M, Singh G, Swaroop S, Singh AK, Singh SP (2019) Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinform 19(13):468. https://doi.org/10.1186/s12859-018-2482-x
Article
Google Scholar
Singh SP, Verma V, Mishra BN (2015) Characterization of Plasmodium falciparum proteome at asexual blood stages for screening of effective vaccine candidates: an immunoinformatics approach. Immunol Immunogenet Insights 7:III.S24755
Article
Google Scholar
Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541. https://doi.org/10.1016/j.immuni.2010.09.017
Article
Google Scholar
Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R (2012) The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30(Suppl 2):B87–B97. https://doi.org/10.1016/j.vaccine.2012.01.033
Article
Google Scholar
O’Ryan M, Stoddard J, Toneatto D, Wassil J, Dull PM (2014) A multi-component meningococcal serogroup B vaccine (4CMenB): the clinical development program. Drugs 74(1):15–30. https://doi.org/10.1007/s40265-013-0155-7
Article
Google Scholar
Dellagostin OA et al (2017) Reverse vaccinology: an approach for identifying leptospiral vaccine candidates. Int J Mol Sci 18(1):158. https://doi.org/10.3390/ijms18010158
Article
Google Scholar
Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF (2014) The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 289(37):25655–25669. https://doi.org/10.1074/jbc.M114.586495
Article
Google Scholar
Horton P et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(suppl_2):W585–W587
Article
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4. https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Krogh A, Larsson B, Heijne GV, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580
Article
Google Scholar
Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850. https://doi.org/10.1093/bioinformatics/17.9.849
Article
Google Scholar
Nielsen H (2017) Predicting secretory proteins with SignalP. In: Protein function prediction. Springer, pp 59–73
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article
Google Scholar
Naz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J, Ali A (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol 32:280–291. https://doi.org/10.1016/j.meegid.2015.03.027
Article
Google Scholar
Chawley P, Samal HB, Prava J, Suar M, Mahapatra RK (2014) Comparative genomics study for identification of drug and vaccine targets in Vibrio cholerae: MurA ligase as a case study. Genomics 103(1):83–93. https://doi.org/10.1016/j.ygeno.2013.12.002
Article
Google Scholar
Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851. https://doi.org/10.1093/bioinformatics/btt619
Article
Google Scholar
Gupta S et al (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8(1):1–15
Article
Google Scholar
Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer, pp 571–607
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0
Article
Google Scholar
Shirai H et al (2014) Antibody informatics for drug discovery. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics 1844(11):2002–2015
Google Scholar
Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/prot.21078
Article
Google Scholar
EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. https://doi.org/10.1002/jmr.893
Article
Google Scholar
Bhasin M, Raghava GP (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23-24):3195–3204. https://doi.org/10.1016/j.vaccine.2004.02.005
Article
Google Scholar
Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform 10(1):1–10
Article
Google Scholar
Paul S et al (2016) TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr Protoc Immunol 114(1):18.19. 1–18.19. 24
Article
Google Scholar
Dhanda SK, Gupta S, Vir P, Raghava GPS (2013) Prediction of IL4 inducing peptides. Clin Dev Immunol 2013:1–9. https://doi.org/10.1155/2013/263952
Article
Google Scholar
Nagpal G et al (2017) Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep 7(1):1–10
Article
Google Scholar
Dhanda SK, Vir P, Raghava GP (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8(1):1–15
Article
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452. https://doi.org/10.1093/nar/gku1003
Article
Google Scholar
da Costa WLO, Araújo CLA, Dias LM, Pereira LCS, Alves JTC, Araújo FA, Folador EL, Henriques I, Silva A, Folador ARC (2018) Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance. PLoS ONE 13(6):e0198965. https://doi.org/10.1371/journal.pone.0198965
Article
Google Scholar
Goñi J, Esteban FJ, de Mendizábal N, Sepulcre J, Ardanza-Trevijano S, Agirrezabal I, Villoslada P (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2(1):52. https://doi.org/10.1186/1752-0509-2-52
Article
Google Scholar
Gao P, Wang QP, Chen L, Huang T (2012) Prediction of human genes' regulatory functions based on proteinprotein interaction network. Protein Pept Lett 19(9):910–916. https://doi.org/10.2174/092986612802084528
Article
Google Scholar
Sen T, Verma NK (2020) Functional annotation and curation of hypothetical proteins present in a newly emerged serotype 1c of Shigella flexneri: emphasis on selecting targets for virulence and vaccine design studies. Genes 11(3):340. https://doi.org/10.3390/genes11030340
Article
Google Scholar
Mora M, Veggi D, Santini L, Pizza M, Rappuoli R (2003) Reverse vaccinology. Drug Discov Today 8(10):459–464. https://doi.org/10.1016/S1359-6446(03)02689-8
Article
Google Scholar
Oprea M, Antohe F (2013) Reverse-vaccinology strategy for designing T-cell epitope candidates for Staphylococcus aureus endocarditis vaccine. Biologicals 41(3):148–153. https://doi.org/10.1016/j.biologicals.2013.03.001
Article
Google Scholar
Kindt TJ et al (2007) Kuby immunology. Macmillan
Duffaud GD et al (1985) Chapter 2 Structure and Function of the Signal Peptide. In: Bronner F (ed) Current Topics in Membranes and Transport. Academic Press, pp 65–104
Salam MA (2009) Prospects of vaccine in leishmaniasis. Bangladesh J Med Microbiol 3(2):40–46
Article
Google Scholar
Singh SP, Mishra BN (2009) Identification and characterization of merozoite surface protein 1 epitope. Bioinformation 4(1):1–5. https://doi.org/10.6026/97320630004001
Article
Google Scholar
Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, pp 571–607
Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182(2):319–326. https://doi.org/10.1016/0003-2697(89)90602-7
Article
Google Scholar
Guruprasad K, Reddy BVB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4(2):155–161. https://doi.org/10.1093/protein/4.2.155
Article
Google Scholar
Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898
Google Scholar
Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P, Schwenk R, Nielsen RA, Debebe Z, Pinelis E, Juompan L, Williams J, Dowler M, Stewart VA, Wirtz RA, Dubois MC, Lievens M, Cohen J, Ballou WR, Heppner, Jr DG, RTS,S Vaccine Evaluation Group (2009) Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis 200(3):337–346
Article
Google Scholar
Miura K (2016) Progress and prospects for blood-stage malaria vaccines. Expert Rev Vaccines 15(6):765–781. https://doi.org/10.1586/14760584.2016.1141680
Article
Google Scholar
Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, Diouf A, Miura K, Lambert LE, Ventocilla JA, Leiva KP, Milne KH, Illingworth JJ, Spencer AJ, Hjerrild KA, Alanine DGW, Turner AV, Moorhead JT, Edgel KA, Wu Y, Long CA, Wright GJ, Lescano AG, Draper SJ (2015) A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 17(1):130–139. https://doi.org/10.1016/j.chom.2014.11.017
Article
Google Scholar
Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, Silk SE, Biswas S, Miura K, Roberts R, Rampling TW, Venkatraman N, Hodgson SH, Labbé GM, Halstead FD, Poulton ID, Nugent FL, de Graaf H, Sukhtankar P, Williams NC, Ockenhouse CF, Kathcart AK, Qabar AN, Waters NC, Soisson LA, Birkett AJ, Cooke GS, Faust SN, Woods C, Ivinson K, McCarthy JS, Diggs CL, Vekemans J, Long CA, Hill AVS, Lawrie AM, Dutta S, Draper SJ (2016) Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis 213(11):1743–1751. https://doi.org/10.1093/infdis/jiw039
Article
Google Scholar
Cockburn IA, Tse SW, Zavala F (2014) CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun 82(4):1460–1464. https://doi.org/10.1128/IAI.01500-13
Article
Google Scholar
Van Braeckel-Budimir N, Harty JT (2014) CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model. Front Microbiol 5:272
Google Scholar
Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123. https://doi.org/10.1128/mr.59.1.94-123.1995
Article
Google Scholar
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416. https://doi.org/10.1093/nar/gkn760
Article
Google Scholar
Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14(6):629–640. https://doi.org/10.1038/sj.onc.1200886
Article
Google Scholar
Lal K, Delves MJ, Bromley E, Wastling JM, Tomley FM, Sinden RE (2009) Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. Int J Parasitol 39(7):755–761. https://doi.org/10.1016/j.ijpara.2008.11.008
Article
Google Scholar