Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
Article
Google Scholar
Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7(1):21. https://doi.org/10.1186/s13578-017-0148-4
Article
Google Scholar
Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271. https://doi.org/10.1146/annurev-genet-110410-132435 PMID: 21910633
Article
Google Scholar
Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 168(1-2):20–36. https://doi.org/10.1016/j.cell.2016.10.044
Article
Google Scholar
Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10(7):1011–1013. https://doi.org/10.1016/j.molp.2017.03.001
Article
Google Scholar
Hu X, Meng X, Liu Q, Li J, Wang K (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16(1):292–297. https://doi.org/10.1111/pbi.12771
Article
Google Scholar
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7(1):12617. https://doi.org/10.1038/ncomms12617
Article
Google Scholar
Gasparis S, Kala M, Przyborowski M, Lyznik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14(1):111. https://doi.org/10.1186/s13007-018-0382-8
Article
Google Scholar
Kis A, Hamar E, Tholt G, Ban R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004–1006. https://doi.org/10.1111/pbi.13077
Article
Google Scholar
Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16(11):1848–1857. https://doi.org/10.1111/pbi.12920
Article
Google Scholar
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
Article
Google Scholar
Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem 131:58–62. https://doi.org/10.1016/j.plaphy.2018.04.033
Article
Google Scholar
Zaplin ES, Liu Q, Li Z, Butardo VM, Blanchard CL, Rahman S (2013) Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Funct Plant Biol 40(10):996–1004. https://doi.org/10.1071/FP12301
Article
Google Scholar
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807. https://doi.org/10.1111/pbi.12200
Article
Google Scholar
Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112(11):3570–3575. https://doi.org/10.1073/pnas.1420294112
Article
Google Scholar
Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9 based plant genome editing. Sci Rep 6(1):21451. https://doi.org/10.1038/srep21451
Article
Google Scholar
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007
Article
Google Scholar
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3434. https://doi.org/10.1093/nar/gkg595
Article
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CR, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318
Article
Google Scholar
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30. https://doi.org/10.1186/1746-4811-7-30
Article
Google Scholar
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. https://doi.org/10.1038/nprot.2007.199
Article
Google Scholar
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus. 12:13
Google Scholar
Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6(1):19675. https://doi.org/10.1038/srep19675
Article
Google Scholar
Mikami M, Toki S, Endo M (2015) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88(6):561–572. https://doi.org/10.1007/s11103-015-0342-x
Article
Google Scholar
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. https://doi.org/10.1093/nar/gkt780 PMID: 23999092
Article
Google Scholar
Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983. https://doi.org/10.1093/mp/sst119
Article
Google Scholar
Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395–2410. https://doi.org/10.1038/nprot.2014.157 PMID: 25232936
Article
Google Scholar
Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985. https://doi.org/10.1104/pp.15.00636
Article
Google Scholar
Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164. https://doi.org/10.1038/nbt.3389
Article
Google Scholar
Li QL, Zhang DB, Chen MJ, Liang WQ, Wei JJ, Qi YP, Yuan Z (2016) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics 43(6):415–419. https://doi.org/10.1016/j.jgg.2016.04.011
Article
Google Scholar
Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027
Article
Google Scholar
Liu W, Xie X, Ma X, Li J, Chen J, Liu YG (2015) DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant 8(9):1431–1433. https://doi.org/10.1016/j.molp.2015.05.009
Article
Google Scholar
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327. https://doi.org/10.1186/s12870-014-0327-y
Article
Google Scholar
Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Nawaz G, Zhao N, Liu Y, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice (Oryza sativa L.). Agronomy 9(11):728. https://doi.org/10.3390/agronomy9110728
Article
Google Scholar
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39. https://doi.org/10.1186/1746-4811-9-39
Article
Google Scholar
Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79(2):348–359. https://doi.org/10.1111/tpj.12554
Article
Google Scholar
Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114 PMID: 23958582
Article
Google Scholar
Nagappan J, Rozana R, Ting NC, Ooi LC-L, Low ETL, Singh R (2013) Exploiting synteny between oil palm and rice to find markers more closely linked to selected trait. J Oil Palm Res 25:180–187
Google Scholar
Kalyana Babu B, Mary Rani KL, Sarika Sahu RK, Mathur Naveen Kumar P, Ravichandran G, Anitha P, Bhagya HP (2019) Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): first microsatellite database (OpSatdb). Sci Rep 9:1899
Article
Google Scholar
Parveez GKA, Rasid OA, Masani MYA, Sambanthamurthi R (2015) Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. Plant Cell Rep 34(4):533–543. https://doi.org/10.1007/s00299-014-1722-4
Article
Google Scholar
Masura SS, Tahir NI, Rasid OA, Ramli US, Othman A, Masani MYA, Parveez GKA, Kushairi A (2017) Post-genomic technologies for the advancement of oil palm research. J Oil Palm Res 29(4):469–486
Article
Google Scholar
Masani MYA, Izawati AMD, Rasid OA, Parveez GKA (2018) Biotechnology of oil palm: current status of oil palm genetic transformation. Biocatal Agric Biotechnol 15:335–347. https://doi.org/10.1016/j.bcab.2018.07.008
Article
Google Scholar
Masli DIA, Parveez GKA, Yunus AMM (2009) Transformation of oil palm using Agrobacterium tumefaciens. J Oil Palm Res 21:643–652
Google Scholar
Parveez GKA, Masri MM, Zainal A, Majid NA, Yunus AMM, Fadilah HH, Rasid O, Cheah SC (2000) Transgenic oil palm: production and projection. Biochem Soc T 28(6):969–972. https://doi.org/10.1042/bst0280969
Article
Google Scholar
Masani MYA, Noll GA, Parveez GKA, Sambanthamurthi R, Prüfer D (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One 9(5):e96831. https://doi.org/10.1371/journal.pone.0096831
Article
Google Scholar
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951. https://doi.org/10.1038/nbt.2969 PMID: 25038773
Article
Google Scholar
Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Wang K (2018) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372
Article
Google Scholar
Jiang WZ, Henry LM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15(5):648–657. https://doi.org/10.1111/pbi.12663
Article
Google Scholar
Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogue F, Faure JD (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15(6):729–739. https://doi.org/10.1111/pbi.12671
Article
Google Scholar
Amin N, Ahmad N, Nan W, Xiumin P, Tong M, Yeyao D, Xiaoxue B, Nan W, Sharif R, Piwu W (2019) CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max.L). BMC Biotechnol 19(1):9. https://doi.org/10.1186/s12896-019-0501-2
Article
Google Scholar
Wu N, Lu Q, Wang P, Zhang Q, Zhang J, Qu J, Wang N (2020) Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid Desaturase mutants based on CRISPR/Cas9 technology. Int J Mol Sci 21(3):1104. https://doi.org/10.3390/ijms21031104
Article
Google Scholar
Ayako O, Takumi O, Chie K, Kanako K, Mizue I, Jun I, Nobuya K (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69
Article
Google Scholar
Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19(1):24. https://doi.org/10.1186/s12896-019-0516-8
Article
Google Scholar
Tian Y, Chen K, Li X, Zheng Y, Chen F (2020) Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2. BMC Plant Biol 20:233
Article
Google Scholar
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096
Article
Google Scholar