Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, Schlievert PM (2012) Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Vaccine (34):5099–5109. https://doi.org/10.1016/j.vaccine.2012.05.067 Epub 2012 Jun 9. PMID: 22691432; PMCID: PMC3397198
Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/NEJM199808203390806
Article
Google Scholar
Reddy PN, Srirama K, Dirisala VR (2017) An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect Dis (Auckl) 10:1179916117703999. https://doi.org/10.1177/1179916117703999
Article
Google Scholar
Poli MA, Rivera VR, Neal D (2002) Sensitive and specific colorimetric ELISAs for Staphylococcus aureus enterotoxins A and B in urine and buffer. Toxicon 40(12):1723–1726. https://doi.org/10.1016/s0041-0101(02)00202-7
Article
Google Scholar
Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E, Oettgen H, Geha RS (2003) Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol 112(5):981–987. https://doi.org/10.1016/j.jaci.2003.07.007
Article
Google Scholar
Bohach GA, Fast DJ, Nelson RD, Schlievert PM (1990) Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 17(4):251–272. https://doi.org/10.3109/10408419009105728
Article
Google Scholar
Argudín MÁ, Mendoza MC, Rodicio MR (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2(7):1751–1773. https://doi.org/10.3390/toxins2071751
Article
Google Scholar
Bone RC (1994) Gram-positive organisms and sepsis. Arch Intern Med 154(1):26–34. PMID: 8267486. https://doi.org/10.1001/archinte.1994.00420010044006
Article
Google Scholar
Nickerson EK, West TE, Day NP, Peacock SJ (2009) Staphylococcus aureus disease and drug resistance in resource-limited countries in south and east Asia. Lancet Infect Dis 9(2):130–135. https://doi.org/10.1016/S1473-3099(09)70022-2
Article
Google Scholar
Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) Active bacterial core surveillance program of the emerging infections program network. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352(14):1436–1444. https://doi.org/10.1056/NEJMoa043252
Article
Google Scholar
Carleton HA, Diep BA, Charlebois ED, Sensabaugh GF, Perdreau-Remington F (2004) Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. J Infect Dis 190(10):1730–1738. https://doi.org/10.1086/425019
Article
Google Scholar
Kourbatova EV, Halvosa JS, King MD, Ray SM, White N, Blumberg HM (2005) Emergence of community-associated methicillin-resistant Staphylococcus aureus USA 300 clone as a cause of health care-associated infections among patients with prosthetic joint infections. Am J Infect Control 33(7):385–391. https://doi.org/10.1016/j.ajic.2005.06.006
Article
Google Scholar
Mandal SM, Ghosh AK, Pati BR (2015) Dissemination of antibiotic resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant S aureus strains isolated from hospital effluents. Am J Infect Control. 43(12):e87–e88. https://doi.org/10.1016/j.ajic.2015.08.015
Article
Google Scholar
Cormier R, Burda WN, Harrington L, Edlinger J, Kodigepalli KM, Thomas J, Kapolka R, Roma G, Anderson BE, Turos E, Shaw LN (2012) Studies on the antimicrobial properties of N-acylated ciprofloxacins. Bioorg Med Chem Lett 22(20):6513–6520. https://doi.org/10.1016/j.bmcl.2012.05.026
Article
Google Scholar
Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350(9092):1670–1673. https://doi.org/10.1016/S0140-6736(97)07324-8
Article
Google Scholar
Otto M (2010) Novel targeted immunotherapy approaches for staphylococcal infection. Expert Opin Biol Ther 10(7):1049–1059. https://doi.org/10.1517/14712598.2010.495115
Article
Google Scholar
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):24–29. https://doi.org/10.1093/nar/gkx346
Article
Google Scholar
Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368. https://doi.org/10.1007/s00251-010-0441-4
Article
Google Scholar
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M (2020) Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Re 19(6):2304–2315. https://doi.org/10.1021/acs.jproteome.9b00874
Article
Google Scholar
Dhanda SK, Vir P, Raghava GP (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8(1):30. https://doi.org/10.1186/1745-6150-8-30
Article
Google Scholar
Ayyagari VS, TC V, K AP, Srirama K (2020) Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformaticsapproach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1850357.
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4. https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model 20(6):2278. https://doi.org/10.1007/s00894-014-2278-5
Article
Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Article
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Edited by: Walker JM. Totowa: Humana Press. pp 571-607.
Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33(Web Server):526–531. https://doi.org/10.1093/nar/gki376
Article
Google Scholar
Castiglione F, Bernaschi M (2004) C-immsim: playing with the immune response. In: Proceedings of the Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004)
Google Scholar
Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47(1):402–407. https://doi.org/10.1093/nar/gkz297
Article
Google Scholar
Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202. https://doi.org/10.1006/jmbi.1999.3091
Article
Google Scholar
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. https://doi.org/10.1038/nprot.2010.5
Article
Google Scholar
Lee GR, Won J, Heo L, Seok C (2019) GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Res 47:451–455. https://doi.org/10.1093/nar/gkz288
Article
Google Scholar
Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362. https://doi.org/10.1002/prot.340170404
Article
Google Scholar
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server):407–410. https://doi.org/10.1093/nar/gkm290
Article
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server):363–367. https://doi.org/10.1093/nar/gki481
Article
Google Scholar
Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159. https://doi.org/10.1002/prot.21495
Article
Google Scholar
Schoenborn JR, Wilson CB (2007) Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2
Article
Google Scholar
Nezafat N, Karimi Z, Eslami M, Mohkam M, Zandian S, Ghasemi Y (2016) Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem 62:82–95. https://doi.org/10.1016/j.compbiolchem.2016.04.006
Article
Google Scholar
Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK (2018) Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 36(17):2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
Article
Google Scholar
Elliott SL, Suhrbier A, Miles JJ, Lawrence G, Pye SJ, Le TT, Rosenstengel A, Nguyen T, Allworth A, Burrows SR, Cox J, Pye D, Moss DJ, Bharadwaj M (2008) Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J Virol 82(3):1448–1457. https://doi.org/10.1128/JVI.01409-07
Article
Google Scholar
Gahery H, Daniel N, Charmeteau B, Ourth L, Jackson A, Andrieu M, Choppin J, Salmon D, Pialoux G, Guillet JG (2006) New CD4+ and CD8+ T cell responses induced in chronically HIV type-1-infected patients after immunizations with an HIV type 1 lipopeptide vaccine. AIDS Res Hum Retrovir 22(7):684–694. https://doi.org/10.1089/aid.2006.22.684
Article
Google Scholar
Asjö B, Stavang H, Sørensen B, Baksaas I, Nyhus J, Langeland N (2002) Phase I trial of a therapeutic HIV type 1 vaccine, Vacc-4x, in HIV type 1-infected individuals with or without antiretroviral therapy. AIDS Res Hum Retrovir 18(18):1357–1365. https://doi.org/10.1089/088922202320935438
Article
Google Scholar
Kran AM, Sørensen B, Nyhus J, Sommerfelt MA, Baksaas I, Bruun JN, Kvale D (2004) HLA- and dose-dependent immunogenicity of a peptide-based HIV-1 immunotherapy candidate (Vacc-4x). AIDS (London, England) 18(14):1875–1883. https://doi.org/10.1097/00002030-200409240-00003
Article
Google Scholar
De Groot AS, Ardito M, Tassone R, Knopf P, Moise L, Martin W (2011) Tools for vaccine design: prediction and validation of highly immunogenic and conserved class II epitopes and development of epitope-driven vaccines, in development of vaccines. Wiley, Hoboken, pp 65–94
Google Scholar
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y (2019) Application of built-in adjuvants for epitope-based vaccines. Peer J 6:e6185. https://doi.org/10.7717/peerj.6185
Article
Google Scholar
Gu Y, Sun X, Li B, Huang J, Zhan B, Zhu X (2017) Vaccination with a paramyosin-based multi-epitope vaccine elicits significant protective immunity against Trichinella spiralis infection in mice. Front Microbiol 8:1475. https://doi.org/10.3389/fmicb.2017.01475
Article
Google Scholar
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, Mahmud S, Rahman SMR, Sheam MM, Haque Z, Adhikari UK (2020) Proteome-wide screening for designing a multiepitope vaccine against emerging pathogen Elizabethkingiaanophelis using immunoinformatic approaches. J Biom Struct Dyn 38(16):4850–4867. https://doi.org/10.1080/07391102.2019.1692072
Article
Google Scholar
Sarkar B, Ullah MA, Johora FT, Taniya MA, Araf Y (2020) Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology 225(3):151955. https://doi.org/10.1016/j.imbio.2020.151955
Article
Google Scholar
Livingston B, Crimi C, Newman M, Higashimoto Y, Appella E, Sidney J, Sette A (2002) A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 168(11):5499–5506. https://doi.org/10.4049/jimmunol.168.11.5499
Article
Google Scholar
Bhatnager R, Bhasin M, Arora J, Dang AS (2020) Epitope based peptide vaccine against SARS-COV2: an immune-informatics approach. J Biomol Struct Dyn:1–16. https://doi.org/10.1080/07391102.2020.1787227
Yang Y, Sun W, Guo J, Zhao G, Sun S, Yu H, Guo Y, Li J, Jin X, Du L, Jiang S, Kou Z, Zhou Y (2015) In silico design of a DNAbased HIV-1 multi-epitope vaccine for Chinese populations. Hum Vaccines Immunother 11(3):795–805. https://doi.org/10.1080/21645515.2015.1012017
Article
Google Scholar
Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C (2017) A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol. 49:309–317. https://doi.org/10.1016/j.meegid.2017.02.007
Article
Google Scholar
Mahmoodi S, Nezafat N, Barzegar A, Negahdaripour M, Nikanfar AR, Zarghami N, Ghasemi Y (2016) Harnessing bioinformatics for designing a novel multiepitope peptide vaccine against breast cancer. Curr Pharm Biotechnol. 17(12):1100–1114. https://doi.org/10.2174/1389201017666160914191106 PMID: 27633889
Article
Google Scholar
Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chemical science 7(2):842–854. https://doi.org/10.1039/c5sc03892h
Article
Google Scholar