International Grains Council (2019) Five-year baseline projections of supply and demand for wheat, maize (corn), rice and soyabeans to 2023/24
Google Scholar
Nowak JL, Okon S, Wieremczuk A (2020) Molecular diversity analysis of genotypes from four Aegilops species based on retrotransposon–microsatellite amplifed polymorphism (REMAP) markers. Cereal Res Commun. 49(1):37–44. https://doi.org/10.1007/s42976-020-00086-1
Article
Google Scholar
Hegde SG, Valkoun J, Waines JG (2002) Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species—a preliminary survey. Crop Sci 42(2):608–614. https://doi.org/10.2135/cropsci2002.6080
Article
Google Scholar
Baum BR, Edwards T, Johnson DA (2009) Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. Mol Phylogenet Evol 53(1):34–44. https://doi.org/10.1016/j.ympev.2009.06.005
Article
Google Scholar
Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculate Roth: potential interest for wheat improvement. Crop Sci 41(4):1321–1329. https://doi.org/10.2135/cropsci2001.4141321x
Article
Google Scholar
Dhanda S, Sethi GS, Behl K (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190(1):6–12. https://doi.org/10.1111/j.1439-037X.2004.00592.x
Article
Google Scholar
Schneider A, Molnar I, Molnar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163(1):1–19. https://doi.org/10.1007/s10681-007-9624-y
Article
Google Scholar
Yesayan AH, Grigorin KV, Danielian AM, Hovhannisyan NA (2009) Determination of salt tolerance in wild einkorn wheat (Triticum boeoticum Boiss.) under in vitro conditions. Crop Wild Relatives 7:4–7
Google Scholar
Hovhannisyan NA, Dulloo ME, Yesayan AH, Knupffer H, Amri A (2011) Tracking of powdery mildew and leaf rust resistance genes in Triticum boeoticum and T. urartu, wild relatives of common wheat. Czech Genet Plant 47(2):45–57. https://doi.org/10.17221/127/2010-CJGPB
Article
Google Scholar
Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance ofAegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36(8):2243–2251. https://doi.org/10.1007/s11738-014-1602-0
Article
Google Scholar
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M, Siddique KHM (2017a) Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant 39(4):106. https://doi.org/10.1007/s11738-017-2403-z
Article
Google Scholar
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Moghaddam M, Etminan A (2017c) Evaluation of agro-morphological diversity in wild relatives of wheat collected in Iran. J Agric Sci Technol 19:943–956
Google Scholar
Pour-Aboughadareh A, Omidi M, Naghavi MR, Etminan A, Mehrabi AA, Poczai P, Bayat H (2019) Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy 9(9):522. https://doi.org/10.3390/agronomy9090522
Article
Google Scholar
Pour-Aboughadareh A, Omidi M, Naghavi MR, Etminan A, Mehrabi AA, Poczai P (2020) Wild relative of wheat respond well to water deficit stress: a comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture 10(9):425. https://doi.org/10.3390/agriculture10090415
Article
Google Scholar
Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018a) Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: Potential sources of variability for drought adaptation. Arch Agron Soil Sci 64(10):1351–1365. https://doi.org/10.1080/03650340.2018.1432855
Article
Google Scholar
Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018b) Wild relatives of wheat: Aegilops-Triticum accessions disclose different antioxidative and physiological response to water stress. Acta Physiol Plant 40(5):90. https://doi.org/10.1007/s11738-018-2673-0
Article
Google Scholar
Ahmadi J, Pour-Aboughadareh A, Fabriki-Ourang S, Mehrabi AA, Siddique KHM (2018c) Screening wild progenitors of wheat for salinity stress at early stages of plant growth: insight into potential sources of variability for salinity adaptation in wheat. Crop Pasture Sci 69(7):649–658. https://doi.org/10.1071/CP17418
Article
Google Scholar
Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Khalili P, Poczai P (2020) Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol Mol Biol Plants 26(3):537–549. https://doi.org/10.1007/s12298-020-00768-4
Article
Google Scholar
Olivera PD, Rouse MN, Jin Y (2019) Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary gene pool of wheat. Front Plant Sci 9:1719. https://doi.org/10.3389/fpls.2018.01719
Article
Google Scholar
Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43(4):1235–1248. https://doi.org/10.2135/cropsci2003.1235
Article
Google Scholar
Pour-Aboughadareh A, Mohmoudi M, Ahmadi J, Moghaddam M, Mehrabi AA, Alavikia SS (2017d) Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet Resour Crop Evol 64(3):545–556. https://doi.org/10.1007/s10722-016-0381-4
Article
Google Scholar
Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27(1):86–93. https://doi.org/10.1007/s11105-008-0060-5
Article
Google Scholar
Singh AK, Rana MK, Singh S, Kumar S, Kumar R, Singh R (2014) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biot 23(2):175–183. https://doi.org/10.1007/s13562-013-0199-5
Article
Google Scholar
Satya P, Karan M, Jana S, Mitra S, Sharma A, Karmakar PG, Ray DP (2015) Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 3:62–70. https://doi.org/10.1016/j.mgene.2015.01.003
Article
Google Scholar
Heikrujam M, Kumar J, Agrawal V (2015) Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT boxderived polymorphism (CBDP) markers. Meta Gene 5:90–97. https://doi.org/10.1016/j.mgene.2015.06.001
Article
Google Scholar
Etminan A, Pour-Aboughadareh A, Mohammadi R, Ahmadi-Rad A, Noori A, Mahdavian Z, Moradi Z (2016) Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol Biotechnol Equip 30(6):1075–1081. https://doi.org/10.1080/13102818.2016.1228478
Article
Google Scholar
Etminan A, Pour-Aboughadareh A, Noori A, Ahmadi-Rad A, Shooshtari L (2018b) Genetic relationships and diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnol Biotechnol Equip 32(3):610–617. https://doi.org/10.1080/13102818.2018.1447397
Article
Google Scholar
Tiwari G, Singh R, Singh N, Choudhury DR, Paliwal R, Kumar A, Gupta V (2016) Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [Andrographis paniculata (Burm.f.) Nees]. Ind Crops Prod 86:1–11. https://doi.org/10.1016/j.indcrop.2016.03.031
Article
Google Scholar
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2018) Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst 152(4):694–703. https://doi.org/10.1080/11263504.2017.1320311
Article
Google Scholar
Gogoi B, Wann SB, Saikia SP (2020) Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of North East India. Mol Biol Rep 47(10):7365–7377. https://doi.org/10.1007/s11033-020-05792-x
Article
Google Scholar
Agarwal A, Gupta V, Haq SU, Jatav P-K, Kothari SL, Kachhwaha S (2019) Assessment of genetic diversity in 29 rose germplasms using SCoT marker. J King Saud Univ Sci 31(4):780–788. https://doi.org/10.1016/j.jksus.2018.04.022
Article
Google Scholar
Qaderi A, Omidi M, Pour-Aboughadareh A, Poczai P, Shaghani J, Mehrafarin A, Nohooji M, Etminan A (2019) Molecular diversity and phytochemical variability in the Iranian poppy (Papaver bracteatum Lindl.): A baseline for conservation and utilization in future breeding programmes. Ind Crops Prod 130:237–247. https://doi.org/10.1016/j.indcrop.2018.12.079
Article
Google Scholar
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15
Google Scholar
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Article
Google Scholar
Perrier X, Jacquemoud-Collet J (2006) DARwin software at available at: http://darwin.cirad.fr/
Google Scholar
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959
Google Scholar
Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7
Article
Google Scholar
Monneveux P, Zaharieva M, Rekika D, Royo C, Nachit MM, Fonzo ND, Araus JL (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. Opt Mediterr. Serie A Seminaires Mediterr 40:71–81
Google Scholar
Jaisankar I, Subramani T, Velmurugan A, Singh AK (2017) Genetic Diversity Revealed Among Rattan Genotypes from Andaman and Nicobar Islands Based on RAPD and ISSR Markers. Int J For Eng 1(2):00007. https://doi.org/10.15406/freij.2017.01.00007
Article
Google Scholar
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2017b) Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res Commun 45(4):574–586. https://doi.org/10.1556/0806.45.2017.033
Article
Google Scholar
Etminan A, Pour-Aboughadareh A, Mehrabi AA, Shooshtari L, Ahmadi-Rad A, Moradkhani H (2019) Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosyst 153(3):398–405. https://doi.org/10.1080/11263504.2018.1492993
Article
Google Scholar
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238. https://doi.org/10.1007/BF00564200
Article
Google Scholar
Etminan A, Pour-Aboughadareh A, Mohammadi R, Noori A, Ahmadi-Rad A (2018a) Applicability of CAAT box-derived polymorphism (CBDP) markers for analysis of genetic diversity in durum wheat. Cereal Res Commun 46(1):1–9. https://doi.org/10.1556/0806.45.2017.054
Article
Google Scholar
Naghavi MR, Ranjbar M, Zali A, Aghaei MJ, Mardi M, Pirseyedi SM (2009) Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat. Cereal Res Commun 37(2):159–167. https://doi.org/10.1556/CRC.37.2009.2.2
Article
Google Scholar
Thomas KG, Bebeli PJ (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylogenet Evol 56(3):951–961. https://doi.org/10.1016/j.ympev.2010.04.041
Article
Google Scholar
Wang Y, Wang C, Zhang H, Yue Z, Liu X, Ji W (2013) Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers. Genet Resour Crop Evol 60(3):1105–1117. https://doi.org/10.1007/s10722-012-9907-6
Article
Google Scholar
Moradkhani H, Mehrabi AA, Etminan A, Pour-Aboughadareh A (2015) Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant Breed Seed Sci 71(1):82–95. https://doi.org/10.1515/plass-2015-0024
Article
Google Scholar
Abbasov M, Brueggeman R, Raupp J, Akparov Z, Aminov N, Bedoshvili D, Gross T, Gross P, Babayeva S, Izzatullayeva V, Mammadova SA, Hajiyev E, Rustamov K, Bikram S-G (2019) Genetic diversity of Aegilops L. species from Azerbaijan and Georgia using SSR markers. Genet Resour Crop Evol 66(2):453–463. https://doi.org/10.1007/s10722-018-0725-3
Article
Google Scholar
Econopouly B, Mckay J, Westra P, Reid S, Helm A, Byrne P (2013) Phenotypic diversity of Aegilops cylindrica (jointed goatgrass) accessions from the western United States under irrigated and dryland conditions. Agric Ecosyst Environ 164:244–251. https://doi.org/10.1016/j.agee.2012.10.005
Article
Google Scholar
Khodaee L, Azizinezhad R, Etminan A, Khosroshahi M (2021) Assessment of genetic diversity among Iranian Aegilops triuncialis accessions using ISSR, SCoT, and CBDP markers. J Genet Eng Biotechnol 19(1):5. https://doi.org/10.1186/s43141-020-00107-w
Article
Google Scholar