Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65(8):385–395. https://doi.org/10.1038/ja.2012.27
Article
Google Scholar
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168(6):311–332. https://doi.org/10.1016/j.micres.2013.02.002
Article
Google Scholar
Mohan KD, Rajamanickam U (2018) Biodiversity of actinomycetes and secondary metabolites. Inn Orig Inter J Sci 5(1):21–27
Google Scholar
Elmallah MIY, Cogo S, Constantinescu A, Esposito SE, Abdelfattah MS, Micheau O (2020) Marine actinomycetes-derived secondary metabolites overcome TRAIL-resistance via the intrinsic pathway through down regulation of survive in and XIAP. Cells 9(8):1760–1778. https://doi.org/10.3390/cells9081760
Article
Google Scholar
Dewi TK, Agustiani D, Antonius S (2017) Secondary metabolites production by actinomycetes and their antifungal activity. Kn E Life Sci:256–264. https://doi.org/10.18502/kls.v3i4.713
Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68(10):5005–5011. https://doi.org/10.1128/AEM.68.10.5005-5011.2002
Article
Google Scholar
Dror B, Jurkevitch E, Cytryn E (2020) State-of-the-art methodologies toidentify antimicrobial secondary metabolites in soil bacterial communities-a review. Soil Biol Biochem 147:107838–107847. https://doi.org/10.1016/j.soilbio.2020.107838
Article
Google Scholar
Bull AT, Ward AC, Goodfellow M (2002) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606. https://doi.org/10.1128/mmbr.64.3.573-606.2000
Article
Google Scholar
Dhanasekaran D, Rajkumar G, Sivamani P, Selvamani S, Panneerselvam A, Thajuddin N (2005) Screening of salt pans actinomycetes for antibacterial agents. Inter J Microbio 2:62–66
Google Scholar
Salwana R, Sharmab V (2020) Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 231:126374. https://doi.org/10.1016/j.micres.2019.126374
Article
Google Scholar
Karuppiah P, Mustaffa M (2013) Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pac J Trop Biomed 3(9):737–742. https://doi.org/10.1016/S2221-1691(13)60148-3
Article
Google Scholar
Al-Ansari M, Kalaiyarasi M, Almalki MA, Vijayaraghavan P (2020) Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. JKSU – Science 32(3):1993–1998. https://doi.org/10.1016/j.jksus.2020.02.005
Article
Google Scholar
Goodfellow M, Williams T (1983) Ecology of actinomycetes. Annu Rev Microbiol 37(1):189–216. https://doi.org/10.1146/annurev.mi.37.100183.001201
Article
Google Scholar
Kuster E, Williams ST (1964) Production of hydrogen sulphide by Streptomyces and methods for its detection. Appl Microbiol 12(1):46–52. https://doi.org/10.1128/AM.12.1.46-52.1964
Article
Google Scholar
Kumar N, Singh RK, Mishra SK, Singh AK, Pachouri UC (2010) Isolation and screening of soil actinomycetes as source of antibiotics active against bacteria. Inter J Microbio Res 2(2):12–16. https://doi.org/10.9735/0975-5276.2.2.12-16
Article
Google Scholar
Gonzalez-Franco AC, Robles Hernande Z, NuñezBarrios A, Strap JL, Crawford DL (2009) Molecular and cultural analysis of seasonal Actinomycetes in soils from Artemisia tridentata habitat. Inter J Experim Botany 78:83–90
Google Scholar
Daniel WU, Erin AG, Adam CJ, Carla SJ, Andrew J, Jones WS, Jaclyn MW (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 11:3617–3625. https://doi.org/10.1128/AEM.00038-11
Article
Google Scholar
Nakade DB (2012) Biodiversity of Actinomycetes in hypersaline soils of Kolhapur district and their screening as potential antibiotic producer. India Res J Recent Sci 1:317–319
Google Scholar
Quadri SR, Agsar D (2012) Antimicrobial attributes of rare actinobacteria detected from limestone quarries. Int J Pharm Bio Sci 3(3):137–147. https://doi.org/10.3389/fmicb.2015.00413
Article
Google Scholar
Tamreihao K, Salam N, Shamjetshabam BC, Khaidem A, Rajkumari L, Ningthoukhongjam J, Debananda SN (2016) Acido tolerant Streptomyces sp. MBRL 10 from limestone quarry site showing antagonism against fungal pathogens and growth promotion in rice plants. J King Saud Uni Sci 30(2):143–152. https://doi.org/10.1016/j.jksus.2016.10.003
Article
Google Scholar
Rifaat HM (2003) The biodiversity of actinomycetes in the River Nile exhibiting antifungal activity. J Mediterran Ecol 4:3–4
Google Scholar
Murti Y, Tarun A (2010) Marine derived pharmaceuticals development of natural health products from marine biodiversity. Inter J Chem Tech Res 1:2198–2217
Google Scholar
Kin SL (2006) Discovery of metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251. https://doi.org/10.1016/j.mib.2006.03.004
Article
Google Scholar
Vimal V, Rajan BM, Kannabiran K (2009) Antimicrobial activity of marine actinomycete, Nocardiopsis sp. VITSVK 5(FJ973467). Asi J Med Sci 1(2):57–63
Google Scholar
Katarzyn J, Aexander R, Guspiel A, ZiemskaJ OJ (2018) Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 67(3):259–272. https://doi.org/10.21307/pjm-2018-048
Article
Google Scholar
Prave P, Faust W, Sitting W, Sukatsch DA (1987) Fundamentals of biotechnology. FRG, Weinheim
Google Scholar
Mikami Y (2007) Biological work on medically important Nocardia species. Actinomycetolo 21(1):46–51. https://doi.org/10.3209/saj.SAJ210107
Article
Google Scholar
Roshan K, Koushik B, Vikas S, Pankaj K, Avijit T (2014) Actinomycetes: potential bioresource for human welfare: a review. Res J Chem Env Sci 2(3):5–16
Google Scholar
Ouyang A, Chang Y (2011) A method to type the potential angucycline producers in actinomycetes isolated from marine sponges. Antonie Van Leeuwenhoek 99(4):807–815. https://doi.org/10.1007/s10482-011-9554-5
Article
Google Scholar
Selvan P, Ravikumar S, Ramu A, Neelakandan P (2012) Antagonistic activity of marine sponge associated Streptomyces sp. against isolated fish pathogens. Asi Pac J Trop Dis:724–728. https://doi.org/10.1016/S2222-1808(12)60252-7
Jurado V, Kroppenstedt RM, Saiz-Jimenez C, Klenk HP, Mouniee D, Laiz L (2009) Hoyosella altamirensis gen. Sp. Nov., a new member of the order Actinomycetales isolated from a cave biofilm. Int J Syst Evol Microbiol 59(12):3105–3110. https://doi.org/10.1099/ijs.0.008664-0
Article
Google Scholar
Cheeptham N, Sadoway T, Rule D, Watson K, Moote P, Soliman ALC, Donkor KK, Horne D (2013) Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery. Int J Speleol 42(1):35–47. https://doi.org/10.5038/1827-806X.42.1.5
Article
Google Scholar
OrtizM NJW, Nelson WM, Legatzki A, Byrne A, Yu A, Wing RA, Soderlund CA, Pryor BM, Pierson LS III, Maier RM (2013) Profiling bacterial diversity and taxanomic composition on speleothem surfaces in kartchner caverns. AZ Microb Ecol 65(2):371–383. https://doi.org/10.1007/s00248-012-0143-6
Article
Google Scholar
González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54(3):401–415. https://doi.org/10.1016/j.femsec.2005.05.004
Article
Google Scholar
Badji B, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2006) Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil. Can Microbiol 52(4):373–382. https://doi.org/10.1139/w05-132
Article
Google Scholar
McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417. https://doi.org/10.1128/cmr.7.3.357
Article
Google Scholar
Asana A, Ilhanb S, Sena B, Potoglu I, Cansu E, Ahmet F, Rasime C, Mevlut D, Suzan T, Oktena S, Tokurb S (2004) Airborne fungi and actinomycetes concentrations in the air of Eskisehir City (Turkey). Ind Built Environ 13(1):63–74. https://doi.org/10.1177/1420326X04033843
Article
Google Scholar
Breznak JA (2004) Invertebrates-insects, in microbial diversity and bioprospecting. Amer Soc Microbio:191–203. https://doi.org/10.1128/9781555817770.ch19
Kristufek V, Ravasz K (1993) Actinomycetes communities in earthworm guts and surrounding soil. Pedobiol 37:379–384
Google Scholar
Teske A, Dhillon A, Sogin MI (2003) Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis and methane oxidation. Biol Bull 204:186–191. https://doi.org/10.2307/1543556
Article
Google Scholar
Kumar R, Biswas K, Soalnki V, Kumar P, Tarafdar A (2014) Actinomycetes: potential bioresource for human welfare: a review. Res J Chem Environ Sci 2(3):5–16
Google Scholar
Tan H, Deng Z, Cao L (2009) Isolation and characterization of actinomycetes from healthy goat faeces. Lett Appl Microbiol 49(2):248–253. https://doi.org/10.1111/j.1472-765X.2009.02649.x
Article
Google Scholar
Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetolo 26(2):72–81. https://doi.org/10.3209/saj.20.72
Article
Google Scholar
Snipes CE, Duebelbeis DO, Olson M, Hahn DR, Dent WH (2007) The ansacarbamitocins: polar ansamitocin derivatives. J Nat Prod 70(10):1578–1581. https://doi.org/10.1021/np070275t
Article
Google Scholar
Sharma M, Dangi P, Choudhary M (2014) Actinomycetes: source, identification, and their applications. Int J Curr Microbiol App Sci 3(2):801–832
Article
Google Scholar
Adegboye MF, Babalola OO (2013) Actinomycetes: a yet inexhaustive source of bioactive secondary metabolites. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, pp 786–795
Google Scholar
Hasani A, Kariminik A, Issazadeh K (2014) Streptomycetes: characteristics and their antimicrobial activities. Int J Adv Biol Biomed Res 2:63–75
Google Scholar
Hong H, Samborskyy M, Usachova K, Schnatz K, Leadlay PF, Dickschat JS (2017) Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein J Org Chem 13:2408–2415. https://doi.org/10.3762/bjoc.13.238
Article
Google Scholar
Baltz RH (2009) Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 13(2):144–151. https://doi.org/10.1016/j.cbpa.2009.02.031
Article
Google Scholar
Hussain AA, Mostafa SA, Ghazal SA, Ibrahim SY (2002) Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. Afr J Mycol Biotechnol 10:63–80
Google Scholar
Sundarapandian S, Sundaram MD, Tholkappian P, Balasubramanian V (2002) Mosquitocidal properties of indigenous fungi and actinomycetes against Culex quinquefasciatus say. J Biol Control 16:89–91
Google Scholar
Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–352. https://doi.org/10.1016/S1369-5266(00)00183-7
Article
Google Scholar
Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Review. Plant Cell Environ 26(2):189–199. https://doi.org/10.1046/j.1365-3040.2003.00956.x
Article
Google Scholar
Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W (2005) Antibiotic terpenoid chlorodihydroquinones from a new marine actinomycete. J Nat Prod 68(6):904–910. https://doi.org/10.1021/np058011z
Article
Google Scholar
Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin a new cytotoxic compound of the methylpyridine class from a marine derived Streptomyces sp. KORDI-3238. J Antibiot 59(4):234–240. https://doi.org/10.1038/ja.2006.33
Article
Google Scholar
Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48(3):299–308. https://doi.org/10.1007/s12088-008-0024-3
Article
Google Scholar
Sheldon PJ, Mao Y, He M, Sherman DH (1999) Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 181(8):2507–2512. https://doi.org/10.1128/JB.181.8.2507-2512.1999
Article
Google Scholar
Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6(4):251–263. https://doi.org/10.1016/S1074-5521(99)80040-4
Article
Google Scholar
Chiu HT, Hubbard BK, Shah AN, Eide J, Fredenburg RA, Walsh CT, Khosla C (2001) Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci 98(15):8548–8553. https://doi.org/10.1073/pnas.151246498
Article
Google Scholar
Angelova L, Dalgalarrondo M, Minkov I, Danova S, Kirilov N, Serkedjieva J, Chobert JM, Haertlé T, Ivanova I (2006) Purification and characterization of a protease inhibitor from Streptomyces chromofuscus 34-1 with an antiviral activity. Biochim Biophys Acta 1760(8):1210–1216. https://doi.org/10.1016/j.bbagen.2006.03.002
Article
Google Scholar
Wei Y, Fang W, Wan Z, Wang K, Yang Q, Cai X, Shi L, Yang Z (2014) Antiviral effects against EV71 of pimprinine and its derivatives isolated from Streptomyces sp. Virol J 11(1):195–209. https://doi.org/10.1186/s12985-014-0195-y
Article
Google Scholar
Bhawsar S (2011) Microbial production of vitamin B12. Biotechnol Prod (3):5-21
Thompson CJ, Fink D, Nguyen LD (2002) Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence. Genome Biol 3(7):1020.1–1020.4. https://doi.org/10.1186/gb-2002-3-7-reviews1020
Article
Google Scholar
Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73(9):2982–29894. https://doi.org/10.1128/aem.02611-06
Article
Google Scholar
Amal AM, Abeer KA, Samia HM, Nadia AH, Ahmed KA, El-Hennawi HM (2011) Selection of pigment (melanin) production in Streptomyces and their application in printing and dyeing of wool fabrics. Res J Chem Sci 1(5):22–28
Google Scholar
Sathi ZS, Sugimoto N, Khalil MI, Gafur MA (2002) Isolation of yellowish antibiotic pigment 4-hydroxy nitrobenzene from a strain of Streptomyces. Pak J Biol Sci 52(2):201–203. https://doi.org/10.3923/pjbs.2002.201.203
Article
Google Scholar
Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, antiinflammatory depsipeptides from a marine streptomycete. J Organomet Chem 64(4):1145–1150. https://doi.org/10.1021/jo9814391
Article
Google Scholar
Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430(6996):242–249. https://doi.org/10.1038/nature02759
Article
Google Scholar
Kundu S, Sahu MK, Sivakumar K, Kannan L (2006) Occurrence of antagonistically active extra-cellular enzyme producing actinomycetes in the alimentary canal of estuarine fishes. Asian J Microbiol Biotech Envi Sci 8:707–710
Google Scholar
Sahu MK, Sivakumar K, Poorani E, Thangaradjou T, Kannan L (2007) Studies on L-asparaginase enzyme of actinomycetes isolated from esturine fishes. J Environ Biol 28(2):465–474
Google Scholar
Vignardet C, Guillaume YC, Friedrich J, Millet J (1999) A first order experimental design to assess soluble proteins released by a new keratinase from Doratomyces microsporus on human substrates. Int J Pharm 191(2):95–102. https://doi.org/10.1016/S0378-5173(99)00283-5
Article
Google Scholar
Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M, Kapadnis B (2017) Actinomycetes: a repertory of green catalysts with a potential revenue resource. BioMed Res Inter:1–8. https://doi.org/10.1155/2013/264020
Stutzenberger FJ (1987) Inducible thermoalkalophilic polygalacturonate lyase from Thermornonospora fusca. J Bacteriol 169(6):2774–2780. https://doi.org/10.1128/jb.169.6.2774-2780.1987
Article
Google Scholar
Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204(2):433–451. https://doi.org/10.1111/j.1432-1033.1992.tb16654.x
Article
Google Scholar
Sun Z, Lu W, Liu P, Wang H, Huang Y, Zhao Y (2015) Isolation and characterization of a proteinaceous α-amylase inhibitor AAI-CC5 from Streptomyces sp. CC5, and its gene cloning and expression. Antonie Van Leeuwenhoek 107(2):345–356. https://doi.org/10.1007/s10482-014-0333-y
Article
Google Scholar
Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot 40(8):1081–1085. https://doi.org/10.7164/antibiotics.40.1081
Article
Google Scholar
Manivasagana P, Venkatesan J, Sivakumar K, Kim S (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169(40):262–278. https://doi.org/10.1016/j.micres.2013.07.014
Article
Google Scholar
Jayaprakashvel M (2012) Therapeutically active biomolecules from marine actinomycetes. J mod Biotechnol 1(1):1–7
Google Scholar
Barbie P, Kazmaier U (2016) Total synthesis of cyclomarin a, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Org Lett 18(2):204–207. https://doi.org/10.1021/acs.orglett.5b03292
Article
Google Scholar
Imade C, Okami Y (1995) Characteristics of marine actinomycete isolated from a deep-sea sediment and production of beta-glucosidase inhibitor. J Mar Biotechnol 2:109–113
Google Scholar
Raja S (2007) Screening of microbial amylase enzyme inhibitors from marine actinomycetes. M.Sc., dissertation. Annamalai University, India, p 40
Nakamura H, Iitaka Y, Kitahara T, Okazaki T, Okami Y (1977) Structure of aplasmomycin. J Antibio 30(9):714–719. https://doi.org/10.7164/antibiotics.30.714
Article
Google Scholar
Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Food Sci Technol 3:286–293. https://doi.org/10.1016/S0924-2244(10)80013-5
Article
Google Scholar
Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-amylase. Appl Environ Microbiol 64(3):1163–1165. https://doi.org/10.1128/AEM.64.3.1163-1165.1998
Article
Google Scholar
Thampayak I, Cheeptham N, Wasu P, Pimporn L, Saisamorn L (2008) Isolation and identification of biosurfactant producing actinomycetes from soil. Res J Microbiol 3(7):499–507. https://doi.org/10.3923/jm.2008.499.507
Article
Google Scholar
Chakraborty S, Ghosh M, Chakraborti S, Jana S, Sen KK, Kokare C, Zhang L (2015) Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation. Int J Biol Macromol 79:405–412. https://doi.org/10.1016/j.ijbiomac.2015.04.068
Article
Google Scholar