Sanche S, Lin Y, Xu C, Romero-Severson E, Hengartner N, Ke R (2020) High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26(7):1470–1477. https://doi.org/10.3201/eid2607.200282
Article
Google Scholar
Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269. https://doi.org/10.1038/s41586-020-2008-3
Article
Google Scholar
Varatharaj A, Thomas N, Ellul M, Davies N, Pollak T, Tenorio E et al (2020) Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7(10):875–882. https://doi.org/10.1016/s2215-0366(20)30287-x
Article
Google Scholar
Bansal M (2020) Cardiovascular disease and COVID-19. Diabetes Metab Syndr Clin Res Rev 14(3):247–250. https://doi.org/10.1016/j.dsx.2020.03.013
Article
Google Scholar
Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M et al (2020) An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395(10239):1771–1778. https://doi.org/10.1016/s0140-6736(20)31103-x
Article
Google Scholar
Transmission of SARS-CoV-2: implications for infection prevention precautions. (2020). Retrieved 20 February 2021, from https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
Article
Google Scholar
Miłek J, Blicharz-Domańska K (2018) Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds. J Vet Res 62(3):249–255. https://doi.org/10.2478/jvetres-2018-0035
Article
Google Scholar
Hossain MU, Bhattacharjee A, Emon M, Chowdhury ZM, Mosaib MG, Mourin M, Das KC, Keya CA, Salimullah M (2021) Recognition of plausible therapeutic agents to combat COVID-19: an Omics data based combined approach. Gene 771:145368. https://doi.org/10.1016/j.gene.2020.145368
Article
Google Scholar
Khailany R, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep 19:100682. https://doi.org/10.1016/j.genrep.2020.100682
Article
Google Scholar
Shu Y, McCauley J (2017) GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance 22(13). https://doi.org/10.2807/1560-7917.es.2017.22.13.30494
Moniruzzaman M, Hossain M, Islam M, Rahman M, Ahmed I, Rahman T et al (2020) Coding-complete genome sequence of SARS-CoV-2 isolate from Bangladesh by sanger sequencing. Microbiol Resour Announcements 9(28). https://doi.org/10.1128/mra.00626-20
Narayanan K, Ramirez S, Lokugamage K, Makino S (2015) Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res 202:89–100. https://doi.org/10.1016/j.virusres.2014.11.019
Article
Google Scholar
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A et al (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587(7835):657–662. https://doi.org/10.1038/s41586-020-2601-5
Article
Google Scholar
Morales D, Lenschow D (2013) The antiviral activities of ISG15. J Mol Biol 425(24):4995–5008. https://doi.org/10.1016/j.jmb.2013.09.041
Article
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1-2):203–214. https://doi.org/10.1089/10665270050081478
Article
Google Scholar
Fleischmann WR Jr (1996) Viral genetics. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston Chapter 43. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8439/
Google Scholar
Zisanur Rahman ASM, Bhattacharjee A, Jaber AA, Hossain M, Hasan KN, Islam S, Bhuyan ZA (2020) High-risk non-synonymous SNPs of human Bcl-2 gene alters structural stability and small molecule binding. Biores Commun-(BRC) 6(1):791–800 Retrieved from http://bioresearchcommunications.com/index.php/brc/article/view/20
Google Scholar
Cheng J, Randall A, Baldi P (2005) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct Funct Bioinform 62(4):1125–1132. https://doi.org/10.1002/prot.20810
Article
Google Scholar
Choi Y, Chan A (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747. https://doi.org/10.1093/bioinformatics/btv195
Article
Google Scholar
Venselaar H, te Beek T, Kuipers R, Hekkelman M, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics 11(1). https://doi.org/10.1186/1471-2105-11-548
Berman H (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
Article
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427
Article
Google Scholar
Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44(W1):W406–W409. https://doi.org/10.1093/nar/gkw336
Article
Google Scholar
Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388. https://doi.org/10.1093/nar/gkt458
Article
Google Scholar
Lovell S, Davis I, Arendall W, de Bakker P, Word J, Prisant M et al (2003) Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct Funct Bioinform 50(3):437–450. https://doi.org/10.1002/prot.10286
Article
Google Scholar
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519. https://doi.org/10.1002/pro.5560020916
Article
Google Scholar
Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. https://doi.org/10.1038/356083a0
Article
Google Scholar
Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264(1):121–136. https://doi.org/10.1006/jmbi.1996.0628
Article
Google Scholar
Freitas B, Durie I, Murray J, Longo J, Miller H, Crich D et al (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6(8):2099–2109. https://doi.org/10.1021/acsinfecdis.0c00168
Article
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
Article
Google Scholar
Bhattacharjee A, Hossain M, Chowdhury Z, Rahman S, Bhuyan Z, Salimullah M, Keya C (2020) Insight of druggable cannabinoids against estrogen receptor β in breast cancer. J Biomol Struct Dyn 39(5):1–10. https://doi.org/10.1080/07391102.2020.1737233
Article
Google Scholar
Báez-Santos Y, St. John S, Mesecar A (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir Res 115:21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
Article
Google Scholar
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T (2004) UCSF chimera? A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
Article
Google Scholar
Abraham M, Murtola T, Schulz R, Páll S, Smith J, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 1-2:19–25. https://doi.org/10.1016/j.softx.2015.06.001
Article
Google Scholar
Schuler L, Daura X, van Gunsteren W (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22(11):1205–1218. https://doi.org/10.1002/jcc.1078
Article
Google Scholar
Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica. Sect D Biol Crystallogr 60(Pt 8):1355–1363. https://doi.org/10.1107/S0907444904011679
Article
Google Scholar
Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271. https://doi.org/10.1021/j100308a038
Article
Google Scholar
Park T, Baek M, Lee H, Seok C (2019) GalaxyTongDock: symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. J Comput Chem 40(27):2413–2417. https://doi.org/10.1002/jcc.25874
Article
Google Scholar
Xue L, Rodrigues J, Kastritis P, Bonvin A, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics:btw514. https://doi.org/10.1093/bioinformatics/btw514
Chen V, Arendall W, Headd J, Keedy D, Immormino R, Kapral G et al (2009) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21. https://doi.org/10.1107/s0907444909042073
Article
Google Scholar
Andersen K, Rambaut A, Lipkin W, Holmes E, Garry R (2020) The proximal origin of SARS-CoV-2. Nat Med 26(4):450–452. https://doi.org/10.1038/s41591-020-0820-9
Article
Google Scholar
Gojobori T, Li W, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369. https://doi.org/10.1007/bf01733904
Article
Google Scholar
Lyons DM, Lauring AS (2017) Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses. Mol Biol Evol 34(12):3205–3215. https://doi.org/10.1093/molbev/msx251
Article
Google Scholar
Koyama, T., Platt, D., & Parida, L. (2020). Variant analysis of SARS-CoV-2 genomes. Retrieved 20 February 2021, from https://www.who.int/bulletin/volumes/98/7/20-253591/en/
Yang D, Leibowitz JL (2015) The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res 206:120–133. https://doi.org/10.1016/j.virusres.2015.02.025
Article
Google Scholar
Yoshimoto FK (2020) The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 39(3):198–216. https://doi.org/10.1007/s10930-020-09901-4
Article
Google Scholar
Huang C, Lokugamage K, Rozovics J, Narayanan K, Semler B, Makino S (2011) SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog 7(12):e1002433. https://doi.org/10.1371/journal.ppat.1002433
Article
Google Scholar
Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S (2006) Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103(34):12885–12890. https://doi.org/10.1073/pnas.0603144103
Article
Google Scholar
Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C (2020) Antiviral activities of type I interferons to SARS-CoV-2 infection. Antivir Res 179:104811. https://doi.org/10.1016/j.antiviral.2020.104811
Article
Google Scholar
Lokugamage KG, Hage A, de Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M, Rajsbaum R, Menachery VD (2020) Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J Virol 94(23):e01410–e01420. https://doi.org/10.1128/JVI.01410-20
Article
Google Scholar
Wathelet MG, Orr M, Frieman MB, Baric RS (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633. https://doi.org/10.1128/JVI.00702-07
Article
Google Scholar
Züst R, Cervantes-Barragán L, Kuri T, Blakqori G, Weber F, Ludewig B, Thiel V (2007) Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3(8):e109. https://doi.org/10.1371/journal.ppat.0030109
Article
Google Scholar
Patick AK, Potts KE (1998) Protease inhibitors as antiviral agents. Clin Microbiol Rev 11(4):614–627. https://doi.org/10.1128/CMR.11.4.614
Article
Google Scholar
Lobanov M, Bogatyreva N, Galzitskaya O (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42(4):623–628. https://doi.org/10.1134/s0026893308040195
Article
Google Scholar