Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article
Google Scholar
Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517. https://doi.org/10.1093/bioinformatics/btv639
Article
Google Scholar
Baldwin SL, Reese VA, Po-wei DH et al (2016) Protection and long-lived immunity induced by the ID93/GLA-SE vaccine candidate against clinical Mycobacterium tuberculosis isolate. ClinVacc Immuno 23(2):137–147. https://doi.org/10.1128/CVI.00458-15
Article
Google Scholar
Baliga P, Shekar M, Venugopal MN (2018) Potential outer membrane protein candidates for vaccine development against the pathogen Vibrio anguillarum: a reverse vaccinology based identification. Curr Microbiol 75(3):368–377. https://doi.org/10.1007/s00284-017-1390-z
Article
Google Scholar
Bellinzoni M, Haouz A, Miras I, Magnet S, André-Leroux G, Mukherjee R, Shepard W, Cole ST, Alzari PM (2014) Structural studies suggest a peptidoglycan hydrolase function for the Mycobacterium tuberculosis Tat-secreted protein Rv2525c. J Struct Biol 188(2):156–164. https://doi.org/10.1016/j.jsb.2014.09.003
Article
Google Scholar
Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(suppl_2):W72–W76
Article
Google Scholar
De Groot AS, Sbai H, Aubin CS et al (2002) Immuno-informatics: mining genomes for vaccine components. Immunol Cell Biol 80(3):255–269. https://doi.org/10.1046/j.1440-1711.2002.01092.x
Article
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4. https://doi.org/10.1186/1471-2105-8-4
Article
Google Scholar
Gong W, Liang Y, Wu X (2018) The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 14(7):1697–1716. https://doi.org/10.1080/21645515.2018.1458806
Article
Google Scholar
Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63(6):325–335. https://doi.org/10.1007/s00251-011-0513-0
Article
Google Scholar
Khoshnood S, Heidary M, Haeili M, Drancourt M, Darban-Sarokhalil D, Nasiri MJ, Lohrasbi V (2018) Novel vaccine candidates against Mycobacterium tuberculosis. Int J Biol Macromol 120(Pt A):180–188. https://doi.org/10.1016/j.ijbiomac.2018.08.037
Article
Google Scholar
Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B (2012) Immune epitope database analysis resource.Nucleic. Acids Res 40(W1):W525–W530. https://doi.org/10.1093/nar/gks438
Article
Google Scholar
Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Micro bio 37(2):239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
Article
Google Scholar
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169
Article
Google Scholar
Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(1):1–7
Article
Google Scholar
Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36(suppl_2):W509–W512
Article
Google Scholar
Malonis RJ, Lai JR, Vergnolle O (2019) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229
Article
Google Scholar
Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, Munchel SE, Pratt MR, Riley LW, Leary JA, Berger JM, Bertozzi CR (2004) Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11(8):721–729. https://doi.org/10.1038/nsmb802
Article
Google Scholar
Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017. https://doi.org/10.1110/ps.0239403
Article
MATH
Google Scholar
Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinfo 6(1):132
Article
Google Scholar
Rauta PR, Ashe S, Nayak D, Nayak B (2016) In silico identification of outer membrane protein (Omp) and subunit vaccine design against pathogenic Vibrio cholerae. Comput Biol Chem 65:61–68. https://doi.org/10.1016/j.compbiolchem.2016.10.004
Article
Google Scholar
Rizzi C, Peiter AC, Oliveira TL, Seixas Neto ACP, Leal KS, Hartwig DD, Seixas FK, Borsuk S, Dellagostin OA, Universidade Federal de Pelotas, Brasil, Universidade Federal de Pelotas, Brasil (2017) Stable expression of Mycobacterium bovis antigen 85B in auxotrophic M. bovis bacillus Calmette-Guérin. Mem Inst Oswaldo Cruz 112(2):123–130. https://doi.org/10.1590/0074-02760160360
Article
Google Scholar
Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34(suppl_2):W202–W209
Article
Google Scholar
Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and mini protein structure prediction. J Chem Comp 10(10):4745–4758
Google Scholar
Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B (2008) Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4(1):2. https://doi.org/10.1186/1745-7580-4-2
Article
Google Scholar
Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88(6):526–544. https://doi.org/10.1016/j.tube.2008.02.004
Article
Google Scholar
Trunz BB, Fine PEM, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367(9517):1173–1180. https://doi.org/10.1016/S0140-6736(06)68507-3
Article
Google Scholar
Verma S, Sugadev R, Kumar A, Chandna S, Ganju L, Bansal A (2018) Multi-epitope DnaK peptide vaccine against S. Typhi: an in silico approach. Vaccine 36(28):4014–4022. https://doi.org/10.1016/j.vaccine.2018.05.106
Article
Google Scholar
Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048. https://doi.org/10.1371/journal.pcbi.1000048
Article
Google Scholar
Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinfo 11(1):568. https://doi.org/10.1186/1471-2105-11-568
Article
Google Scholar
Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN, Broadwater A, Kolla RV, de Silva AD, de Silva AM, Mattia KA, Doranz BJ, Grey HM, Shresta S, Peters B, Sette A (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc Natl Acad Sci 110(22):E2046–E2053. https://doi.org/10.1073/pnas.1305227110
Article
Google Scholar
Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 56(4):648–661
Google Scholar
Zhang F, Xie JP (2011) Mammalian cell entry gene family of Mycobacterium tuberculosis. Mol Cell Biochem 352(1-2):1–10. https://doi.org/10.1007/s11010-011-0733-5
Article
Google Scholar
Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A (2008) Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformaticanalyses. BMC Med Genomics 1(1):18. https://doi.org/10.1186/1755-8794-1-18
Article
Google Scholar