Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D et al (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60. https://doi.org/10.1016/j.plaphy.2012.11.004
Article
Google Scholar
Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13 https://doi.org/10.1111/pbi.12220
Google Scholar
Zhang X, Liu X, Wang W, Zhang T, Zeng X, Xu G et al (2018) Spatiotemporal variability of drought in the northern part of northeast China. Hydrol Process 32:1449–1460. https://doi.org/10.1002/hyp.11503
Article
Google Scholar
Alghabari F, Ihsan MZ (2018) Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh J Bot 47:421–428. https://doi.org/10.3329/bjb.v47i3.38679
Article
Google Scholar
Akbari KR, Husain R, Farajpour M, Mazzuca S, Mahna N (2020) Sodium chloride induced stress responses of antioxidative activities in leaves and roots of pistachio rootstock. Biomolecules 10. https://doi.org/10.3390/biom10020189
Sheikh-Mohamadi MH, Etemadi N, Nikbakht A, Farajpour M, Arab M, Majidi MM (2017) Screening and selection of twenty iranian wheatgrass genotypes for tolerance to salinity stress during seed germination and seedling growth stage. HortScience 52:1125–1134. https://doi.org/10.21273/HORTSCI12103-17
Article
Google Scholar
Sheikh-Mohamadi MH, Etemadi N, Nikbakht A, Farajpour M, Arab M, Majidi MM (2018) Wheatgrass germination and seedling growth under osmotic stress. Agron J 110:572–585. https://doi.org/10.2134/agronj2017.06.0364
Article
Google Scholar
Arriagada O, Mora F, Quitral Y, Del Pozo A (2017) Identificação de QTL associados a características agronômicas, morfológicas e fisiológicas em cevada sob condições de sequeiro, usando marcadores SNP. Acta Sci - Agron 39:321–329 https://doi.org/10.4025/actasciagron.v39i3.32612
Google Scholar
Jin XF, Xiong AS, Peng RH, Liu JG, Gao F, Chen JM et al (2010) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep 43:34–39 https://doi.org/10.5483/BMBRep.2010.43.1.034
Google Scholar
Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N et al (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573 https://doi.org/10.1023/A:1014875215580
Google Scholar
Talamè V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240 https://doi.org/10.1093/jxb/erl163
Google Scholar
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R et al (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544 https://doi.org/10.1093/jxb/erp194
Google Scholar
Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: Gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10:191–205 https://doi.org/10.1007/s10142-009-0149-4
Google Scholar
Worch S, Rajesh K, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L et al (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1 https://doi.org/10.1186/1471-2229-11-1
Google Scholar
Hübner S, Korol AB, Schmid KJ (2015) RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol 15:1–14 https://doi.org/10.1186/s12870-015-0528-z
Google Scholar
Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q et al (2017) Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. BMC Genomics 18:1–15 https://doi.org/10.1186/s12864-017-4152-1
Google Scholar
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J et al (2018) No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci 8 https://doi.org/10.3389/fpls.2017.02212
Yeger-lotem AE, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, et al. Protein Interaction Linked references are available on JSTOR for this article: network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction 2016.
Google Scholar
Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18:1121–1122 https://doi.org/10.1038/81025
Google Scholar
Guelzim N, Bottani S, Bourgine P, Képès F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63 https://doi.org/10.1038/ng873
Google Scholar
Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132 https://doi.org/10.1016/j.pbi.2009.01.005
Google Scholar
Sazegari S, Zinati Z, Tahmasebi A (2020) Dynamic transcriptomic analysis uncovers key genes and mechanisms involved in seed priming-induced tolerance to drought in barley. Gene Reports 21:100941
Google Scholar
Alexander RD, Wendelboe-Nelson C, Morris PC (2019) The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem 142:246–253
Google Scholar
Ju Y, Yue X, Min Z, Wang X, Fang Y, Zhang J (2020) VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 146:98–111
Google Scholar
Yazdani B, Sanjari S, Asghari-Zakaria R, Ghanegolmohammadi F, Pourabed E, Shahbazi M et al (2020) Revision of the barley WRKY gene family phylogeny and expression analysis of the candidate genes in response to drought. Biol Plant 64:9–19
Google Scholar
Cui X, Xu J, Asghar R, Condamine P, Svensson JT, Wanamaker S et al (2005) Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinformatics 21:3852–3858
Google Scholar
Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K et al (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: Transcriptome-based analysis of Barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405 https://doi.org/10.1007/s10142-008-0081-z
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 https://doi.org/10.1093/nar/25.17.3389
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452 https://doi.org/10.1093/nar/gku1003
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 27:431–432 https://doi.org/10.1093/bioinformatics/btq675
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z et al (2017) AgriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129 https://doi.org/10.1093/nar/gkx382
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676 https://doi.org/10.1093/bioinformatics/bti610
Google Scholar
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108 https://doi.org/10.1038/nprot.2008.73
Google Scholar
Pfaffl MW (2002) Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36e https://doi.org/10.1093/nar/30.9.e36
Google Scholar
Fowler S, Thomashow MF (2002) Arabidopsis transcrFowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675–90.iptome pr. Plant Cell 14:1675–1690 https://doi.org/10.1105/tpc.003483.Toward
Google Scholar
Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122 https://doi.org/10.1016/j.copbio.2006.02.002
Google Scholar
Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:1–26 https://doi.org/10.3389/fpls.2016.00571
Google Scholar
Gürel F, Öztürk ZN, Uçarlı C, Rosellini D (2016) Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops. Front Plant Sci 7 https://doi.org/10.3389/fpls.2016.01137
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1–15 https://doi.org/10.3389/fpls.2016.01029
Google Scholar
Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F (2016) Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biol 16:1–12 https://doi.org/10.1186/s12870-015-0701-4
Google Scholar
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (1819) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta - Gene Regul Mech 2012:86–96 https://doi.org/10.1016/j.bbagrm.2011.08.004
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992
Google Scholar
Mingyu Z, Zhengbin Z, Shouyi C, Jinsong Z, Hongbo S (2012) WRKY transcription factor superfamily: structure, origin and functions. Afr J Biotechnol 11:8051–8059
Google Scholar
Wang N-N, Xu S-W, Sun Y-L, Liu D, Zhou L, Li Y et al (2019) The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Sci Rep 9:1–13
Google Scholar
Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693
Google Scholar
Cao S, Wang Y, Li X, Gao F, Feng J, Zhou Y (2020) Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9:1–20 https://doi.org/10.3390/plants9040455
Google Scholar
Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249 https://doi.org/10.1111/j.1467-7652.2010.00547.x
Google Scholar
Abraham Z, Iglesias-Fernández R, Martínez M, Rubio-Somoza I, Díaz I, Carbonero P et al (2016) A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous-1) and HvGAMYB interactions. Plant Physiol 170:2146–2158 https://doi.org/10.1104/pp.16.00092
Google Scholar
Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U et al (2012) Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 40:8240–8254 https://doi.org/10.1093/nar/gks594
Google Scholar
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:1–16 https://doi.org/10.1186/s12870-016-0806-4
Google Scholar
Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190:823–837 https://doi.org/10.1111/j.1469-8137.2011.03733.x
Google Scholar
Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH et al (2012) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80:571–585 https://doi.org/10.1007/s11103-012-9967-1
Google Scholar
Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381 https://doi.org/10.1016/j.tplants.2012.02.004
Google Scholar
Christiansen MW, Holm PB, Gregersen PL (2011) Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Res Notes 4:1–13 https://doi.org/10.1186/1756-0500-4-302
Google Scholar
Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF et al (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561 https://doi.org/10.1016/j.bbrc.2009.09.032
Google Scholar
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M (2019) Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant Cell Rep 38:361–376 https://doi.org/10.1007/s00299-019-02371-8
Google Scholar
Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci 9:1426
Google Scholar
Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95 https://doi.org/10.1104/pp.108.129791
Google Scholar
Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556 https://doi.org/10.1093/jxb/err431
Google Scholar
Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y et al (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36 https://doi.org/10.1007/s11103-013-0115-3
Google Scholar
Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi Y Do, et al. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197 https://doi.org/10.1104/pp.110.154773
Google Scholar
Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors - light, stress and development. Trends Plant Sci 17:163–171 https://doi.org/10.1016/j.tplants.2011.12.002
Google Scholar
Perotti MF, Ribone PA, Chan RL (2017) Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses. IUBMB Life 69:280–289 https://doi.org/10.1002/iub.1619
Google Scholar
Janiak A, Kwasniewski M, Sowa M, Kuczyńska A, Mikołajczak K, Ogrodowicz P et al (2019) Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. Int J Mol Sci 20:6139
Google Scholar
Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426 https://doi.org/10.1016/j.tplants.2007.08.003
Google Scholar
Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L (2006) Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 360:213–227 https://doi.org/10.1016/j.jmb.2006.04.029
Google Scholar
Klinkenberg LG, Mennella TA, Luetkenhaus K, Zitomer RS (2005) Combinatorial repression of the hypoxic genes of Saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Society 4:649–660 https://doi.org/10.1128/EC.4.4.649
Google Scholar
Banerjee N, Zhang MQ (2003) Identifying cooperatively among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 31:7024–7031 https://doi.org/10.1093/nar/gkg894
Google Scholar