Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. https://doi.org/10.6064/2012/963401
Article
Google Scholar
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ – Sci 26(1):1–20. https://doi.org/10.1016/j.jksus.2013.05.001
Article
Google Scholar
Gupta S, Kaushal R, Sood G (2018) Impact of plant growth–promoting rhizobacteria on vegetable crop production. Int J Veg Sci 24(3):289–300. https://doi.org/10.1080/19315260.2017.1407984
Article
Google Scholar
Pieterse CMJ, van Pelt JA, Verhagen BWM, Ton J, van Wees ACM, Léon-Kloosterziel KM et al (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54
Google Scholar
Habibi S, Djedidi S, Prongjunthuek K, Mortuza MF, Ohkama-Ohtsu N, Sekimoto H et al (2014) Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379(1-2):51–66. https://doi.org/10.1007/s11104-014-2035-7
Article
Google Scholar
Nathiya S, Janani R, Kannan V (2020) Potential of plant growth promoting Rhizobacteria to overcome the exposure of pesticide in Trigonella foenum-graecum (fenugreek leaves). Biocatal Agric Biotechnol 23:101493
Article
Google Scholar
Zahid M, Abbasi MK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207. https://doi.org/10.3389/fmicb.2015.00207
Article
Google Scholar
Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 5(1):1–11. https://doi.org/10.1186/s13568-015-0154-z
Article
Google Scholar
Teixeira H, Rodríguez-Echeverría S (2016) Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park. Syst Appl Microbiol 39(5):350–358
Article
Google Scholar
Lebrazi S, Chraibi M, Fadil M, Barkai H, Fikri-Benbrahim K (2018) Phenotypic, genotypic and symbiotic characterization of rhizobial isolates nodulating Acacia sp. in Morocco. J Pure Appl Microbiol 12(1):249–263. https://doi.org/10.22207/JPAM.12.1.30
Article
Google Scholar
Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F et al (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 80(3):534–547. https://doi.org/10.1111/j.1574-6941.2012.01315.x
Article
Google Scholar
Tanwar SPS, Shaktawat MS (2003) Influence of phosphorus sources, levels and solubilizers on yield, quality and nutrient uptake of soybean (Glycine max)-wheat (Triticum aestivum) cropping system in southern Rajasthan. Indian J Agric Sci 73(1):3–7
Google Scholar
Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181. https://doi.org/10.1007/s00284-010-9674-6
Article
Google Scholar
Chandra S, Askari K, Kumari M (2018) Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol 16(2):581–586. https://doi.org/10.1016/j.jgeb.2018.09.001
Article
Google Scholar
Fierro-Coronado RA, Quiroz-Figueroa FR, García-Pérez LM, Ramírez-Chávez E, Molina-Torres J, Maldonado-Mendoza IE (2014) IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Can J Microbiol 60(10):639–648. https://doi.org/10.1139/cjm-2014-0399
Article
Google Scholar
Jaiswal A, Das K, Koli DK, Pabbi S (2018) Characterization of cyanobacteria for IAA and siderophore production and their effect on rice seed germination. Int J Curr Microbiol App Sci 5:212–222
Google Scholar
Ramos Solano B, Maicas JB, Pereyra De La Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Am Phytopath Soc 98(4):451–457. https://doi.org/10.1094/PHYTO-98-4-0451
Article
Google Scholar
Lebrazi S, Fadil M, Chraibi M, Fikri-Benbrahim K (2020) Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. J Genet Eng Biotechnol 18(1):1–10. https://doi.org/10.1186/s43141-020-00035-9
Article
Google Scholar
Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320
Article
Google Scholar
Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turkish J Biol 29(1):29–34
MathSciNet
Google Scholar
Vincent JM. A manual for the practical study of the root-nodule bacteria. IBP Handb 15 Blackwell Sci Publ Oxford 1970.
Elbanna K, Elbadry M, Gamal-Eldin H (2009) Genotypic and phenotypic characterization of rhizobia that nodulate snap bean (Phaseolus vulgaris L.) in Egyptian soils. Syst Appl Microbiol 32(7):522–530. https://doi.org/10.1016/j.syapm.2009.07.006
Article
Google Scholar
Berrada H, Nouioui I (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. African J Microbiol Res 6(25):5312–5324
Google Scholar
Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58(2):195–201. https://doi.org/10.1016/j.aoas.2013.07.007
Article
Google Scholar
Srivastav S, Yadav KS, Kundu BS (2004) Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian J Microbiol 44(2):91–94
Google Scholar
Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
Article
Google Scholar
Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi. https://scholar.google.com/scholar_lookup?title=Soil%20chemical%20analysis&publication_year=1973&author=Jackson%2CML.
Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538
Article
Google Scholar
Fikri-Benbrahim K, Chraibi M, Lebrazi S, Moumni M, Ismaili M (2017) Phenotypic and genotypic diversity and symbiotic effectiveness of rhizobia isolated from Acacia sp. grown in Morocco. J Agr Sci Tech 19:201–216
Google Scholar
Edwards U, Rogall T, Blöcker H, Emde M, Böttger E (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853
Article
Google Scholar
Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198(4):379–387. https://doi.org/10.1007/s00203-016-1197-5
Article
Google Scholar
Yousef NMH (2018) Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. Eur J Biol Res Res Artic Eur J Biol Res 8(4):174–182. https://doi.org/10.5281/zenodo.1412796
Article
Google Scholar
Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan EK (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol 117(3):786–799. https://doi.org/10.1111/jam.12569
Article
Google Scholar
Ehmann A (1977) The van URK-Salkowski reagent — a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr A 132(2):267–276. https://doi.org/10.1016/S0021-9673(00)89300-0
Article
Google Scholar
Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198. https://doi.org/10.3389/fmicb.2015.00198
Article
Google Scholar
Sridevi M, Mallaiah KV (2009) Phosphate solubilization by Rhizobium strains. Indian J Microbiol 49(1):98–102. https://doi.org/10.1007/s12088-009-0005-1
Article
Google Scholar
Kumar G, Ram M (2014) Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res 2(3):105–109
Article
Google Scholar
Marra LM, de Oliveira-Longatti SM, Soares CRFS, Olivares FL, Moreira FM de S. (2019) The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate. Geomicrobiol J 36(3):232–242. https://doi.org/10.1080/01490451.2018.1542469
Article
Google Scholar
Islam M, Sano A, Majumder M, Hossain M, Sakagami J (2014) Isolation and molecular characterization of phosphate solubilizing filamentous fungi from subtropical soils in Okinawa. Appl Ecol Environ Res 17(4):9145–9157. https://doi.org/10.15666/aeer/1704_91459157
Article
Google Scholar
Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:7p
Article
Google Scholar
Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649
Google Scholar
Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391. https://doi.org/10.1128/JB.186.16.5384-5391.2004
Article
Google Scholar
Ghosh PK, Saha P, Mayilraj S, Maiti TK (2013) Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric Biotechnol 2(3):234–239. https://doi.org/10.1016/j.bcab.2013.04.002
Article
Google Scholar
Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155(2):123–127. https://doi.org/10.1016/S0944-5013(00)80047-6
Article
Google Scholar
Raut V, Shaikh I, Naphade B, Prashar K, Adhapure N (2017) Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach. Chem Biol Technol Agric 4(1):1–11. https://doi.org/10.1186/S40538-016-0083-3
Article
Google Scholar
Mandal S, Mondal K, Dey S, Pati B (2007) Optimization of cultural and nutritional conditions for indole-3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.). Res J Microbiol 2:239–246
Article
Google Scholar
Thokal P, Shelar B, Shaikh S, Adhapure N (2013) Microbial optimized production of indole acetic acid and assessment of other plant growth promoting activities. Int J Sci Nat 4(4):627–632
Google Scholar
Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27(2):327–342. https://doi.org/10.1023/A:1005632506230
Article
Google Scholar
Mia M, Shamsuddin Z, Mahmood M (2014) Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. African J Biotechnol 11(6):3758–3765. https://doi.org/10.4314/ajb.v11i16
Article
Google Scholar
Spaepen S, Das F, Luyten E, Michiels J, Vanderleyden J (2009) Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett 291(2):195–200. https://doi.org/10.1111/j.1574-6968.2008.01453.x
Article
Google Scholar
Ribeiro V, Marriel I, Sousa S, Lana U, Mattos B, Oliveira C et al (2018) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian J Microbiol 49:40–46
Article
Google Scholar
de Sousa SM, de Oliveira CA, Andrade DL, de Carvalho CG, Ribeiro VP, Pastina MM et al (2020) Tropical bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul:1–11. https://doi.org/10.1007/s00344-020-10146-9
Hatta M, Beyl CA, Garton S (1995) Induction of roots on jujube softwood cuttings using Agrobacterium rhizogenes. J Hort Science 71(6):881–886
Article
Google Scholar
Ipek M, Pirlak L, Esitken A, Figen Dönmez M, Turan M, Sahin F (2014) Plant growth-promoting rhizobacteria (Pgpr) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37(7):990–1001. https://doi.org/10.1080/01904167.2014.881857
Article
Google Scholar
Flores-Félix J-D, Carro L, Velázquez E, Valverde Á, Cerda-Castillo E, García-Fraile P et al (2013) Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 63(3):821–826. https://doi.org/10.1099/ijs.0.038497-0
Article
Google Scholar
Sánchez M, Bahena-Ramírez MH, Peix A, Lorite MJ, Sanjuán J, Velázquez E et al (2014) Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 64(Pt 3):781–786. https://doi.org/10.1099/ijs.0.052993-0
Article
Google Scholar
Poitout A, Martinière A, Kucharczyk B, Queruel N, Silva-Andia J, Mashkoor S et al (2017) Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. J Exp Bot 68(5):1199–1211
Article
Google Scholar
Deepa CK, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol 226(7):1233–1240. https://doi.org/10.1007/s11274-009-0293-y
Article
Google Scholar
Imran A, Saadalla MJA, Khan S-U, Mirza MS, Malik KA, Hafeez FY (2014) Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann Microbiol 64(4):1797–1806. https://doi.org/10.1007/s13213-014-0824-0
Article
Google Scholar
Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37(3):395–412. https://doi.org/10.1016/j.soilbio.2004.08.030
Article
Google Scholar
Räsänen LA, Sprent JI, Lindström K (2001) Symbiotic properties of sinorhizobia isolated from acacia and prosopis nodules in Sudan and Senegal. Plant Soil 235(2):193–210. https://doi.org/10.1023/A:1011901706936
Article
Google Scholar
Rajwar A, Sahgal M, Johri B (2013) Legume–rhizobia symbiosis and interactions in agroecosystems. Plant Microbe Symbiosis Fundam Adv Springer, New Delhi, pp 233–265. https://doi.org/10.1007/978-81-322-1287-4_9
Book
Google Scholar
Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian J Microbiol 39(3):423–426. https://doi.org/10.1590/S1517-83822008000300003
Article
Google Scholar
Walker V, Bruto M, Bellvert F, Bally R, Muller D, Prigent-Combaret C et al (2013) Unexpected phytostimulatory behavior for Escherichia coli and Agrobacterium tumefaciens model strains. Mol Plant Microbe Interact 26(5):495–502. https://doi.org/10.1094/MPMI-12-12-0298-R
Article
Google Scholar
Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403. https://doi.org/10.1016/j.chom.2015.01.011
Article
Google Scholar
Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res 169(5-6):325–336. https://doi.org/10.1016/j.micres.2013.09.011
Article
Google Scholar
Kobayashi A, Kobayashi YO, Someya N, Ikeda S (2015) community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ 30(4):301–309. https://doi.org/10.1264/jsme2.ME15109
Article
Google Scholar
Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):e0152478. https://doi.org/10.1371/journal.pone.0152478
Article
Google Scholar