Allkin R, Goyder DJ, Bisby FA, White RJ (1986) Names and synonyms of species and subspecies in the Vicieae. Vicieae Database Project. 7:1–75.
Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes from the Royal Botanic Garden Edinburgh. 41:209–244.
Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 9:1199–1209. https://doi.org/10.3732/ajb.92.7.1199
Article
Google Scholar
Vaz Patto MC, Rubiales D (2014) Lathyrus diversity: available resources with relevance to crop improvement-L. sativus and L. cicera as case studies. Annals of botany 113: 895–908. https://doi.org/10.1093/aob/mcu0245.
Almeida NF, Leitão ST, Krezdorn N, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2014b) Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biol 14:376 https://doi. org/ 10.1186/s12870-014-0376-2
Almeida NF, Krezdorn N, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2015) Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deep Super SAGE analysis. Front Plant Sci 6:178 https://doi.org/10.3389/fpls.2015.00178
Article
Google Scholar
Lambein F, Travella S, Kuo Y et al (2019) Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical, or just plain food? Planta 250:821–838 https://doi.org/10.1007/s00425-018-03084-0
Article
Google Scholar
Gutiérrez J, Vaquero F, Vences F (1994) Allopolyploid vs. autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73: 29–40. https://doi.org/ 10.1038/ hdy. 1994.95
Klamt A, Schifino‐Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genetics and Molecular Biology 23:463–467. https://doi.org/10.1590/S1415-47572000000200036
Seijo JG, Fernández A (2001) Cytogenetic analysis in Lathyrus japonicus Willd. (Leguminosae). Caryologia 66:173–179. https://doi.org/10.1080/00087114.2001.10589225
Article
Google Scholar
Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot 90:980–987 10. 3732/ajb.90.7.980
Article
Google Scholar
Narayan RKJ, Rees H (1976) Nuclear DNA variation in Lathyrus. Chromosoma 54:141–154
Article
Google Scholar
Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B Biol. Sci. No. 334:309–345 www.jstor.org/stable/55569
Article
Google Scholar
Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012). http://www.kew.org/cvalues/. Accessed 5 Jan 2013
Hizume M, Shiraishi H, Matsusaki Y, Shibata F (2013) Localization of 45S and 5S rDNA on Chromosomes of Nigella damascena, Ranunculaceae. Cytologia 78: 379–381. 10.1508/cytologia.78.379
Ikeda K, Sato S, Matoba H, Nagano K, Uchiyama H (2013) Molecular Cytogenetic Analysis of the Critically Endangered Trigonotis radicans var. radicans and var. sericea and Allied Species in Japan. Cytologia 78:297-303. https://doi.org/10.1508/cytologia.78.297
Kuroki Y, Shibata F, Hizume M (2013) Chromosome Bandings and Signal Pattern of FISH Using rDNAs in Bellevalia romana. Cytologia 78:399–401. https://doi.org/10.1508/cytologia.78.399
Article
Google Scholar
Howe ES, Murphy S, Bass HW (2013) Three-Dimensional Acrylamide Fluorescence In Situ Hybridization for Plant Cells. In: Pawlowski W., Grelon M, Armstrong S (eds) Plant Meiosis. Methods in Molecular Biology (Methods and Protocols), vol 990. Humana Press, Totowa, NJ. 10.1007/978-1-62703-333-6_6
Yokomi I, Ogiwara H, Kohno T, Yokota J, Satoh H (2013) Comparative fiber-FISH reveals what happened at the integration site of the transfected plasmid DNA. Cytologia 78:121–122. https://doi.org/10.1508/cytologia.81.359
Article
Google Scholar
Lakshmanan PS, Van Laere K, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E, Khrustaleva L (2015) Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae). Comp Cytogenet 9:145‐160. https://doi.org/10.3897/CompCytogen.v9i2.4366
Article
Google Scholar
Dechyeva D, Schmidt T (2016) Fluorescent In Situ Hybridization on Extended Chromatin Fibers for High-Resolution Analysis of Plant Chromosomes. In: Kianian S, Kianian P (eds) Plant Cytogenetics. Methods in Molecular Biology, vol 1429. Humana Press, New York, NY. 10.1007/978-1-4939-3622-9_3
Jiang J (2019) Fluorescence In Situ Hybridization in plants: recent developments and future applications. Chromosome Res 27:153–165. https://doi.org/10.1007/s10577-019-09607-z
Article
Google Scholar
Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725. https://doi.org/10.1139/g94-102
Article
Google Scholar
Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068. https://doi.org/10.1139/g06-076
Article
Google Scholar
Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307. https://doi.org/10.1007/s00122-009-0981-x
Article
Google Scholar
Iwata A, Greenland CM, Jackson SA (2013) Cytogenetics of Legumes in the Phaseoloid Clade. Plant Genome 6. https://doi.org/10.3835/plantgenome2013.03.0004
Ortiz AM, Robledo G, Seijo G, Valls JFM, Lavia GI (2017) Cytogenetic evidences on the evolutionary relationships between the tetraploids of the section Rhizomatosae and related diploid species (Arachis, Leguminosae). J Plant Res 130:791-807. 10.1007 /s10265-017-0949-x
Van-Lume B, Mata-Sucre Y, Báez M, Ribeiro T, Huettel B, Gagnon E, Leitch IJ, Pedrosa-Harand A, Lewis GP, Souza G (2019) Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. Planta Dec 250:2173-2186. 10.1007/s00425-019-03287-z
Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence In Situ Hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. https://doi.org/10.1007/s00412-012-0384-7
Article
Google Scholar
Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730. https://doi.org/10.1007/s00122-013-2253-z
Article
Google Scholar
Dillon A, Varanasi VK, Danilova TV, Koo DH, Nakka S, Peterson DE, Tranel PJ, Friebe B, Gill BS, Jugulam M (2017) Physical mapping of amplified copies of the 5-enolpyruvylshikimate-3-phosphate synthase gene in glyphosate-resistant Amaranthus tuberculatus. Plant Physiol 173:1226–1234. https://doi.org/10.1104/pp.16.01427
Article
Google Scholar
Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. The Plant Journal 28:689–697. https://doi.org/10.1046/j.1365-313x.2001.01194.x
Article
Google Scholar
Gu YQ, Ma Y, Huo N, Vogel JP, You FM et al (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC genomics 10:496. https://doi.org/10.1186/1471-2164-10-496
Article
Google Scholar
Han YH, Zhang T, Thammapichai P, Weng YQ, Jiang JM (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779. https://doi.org/10.1534/genetics.115.177642
Article
Google Scholar
Albert PS, Zhang T, Semrau K, Rouillard J-M, Kao Y-H, Wang C-JR, Danilova TV, Jiang JM, Birchler JA (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci U S A 116:1679–1685. https://doi.org/10.1073/pnas.1813957116
Article
Google Scholar
Fransz P, Linc G, Lee C‐R, Aflitos SA, Lasky JR, Toomajian C, Ali H, Peters J, van Dam P, Ji X, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger TE, de Jong H, Schranz ME (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J 88:159–178. https://doi.org/10.1111/tpj.13262
Article
Google Scholar
Ali HBM, Fransz, P, Schubert I (2000a) Localization of 5S RNA Genes on Tobacco Chromosomes. Chromosome Res 8: 85–87. https://doi.org/10.1023/A:1009295623450
Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711.
Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Pl Syst Evol 259:175–198. https://doi.org/10.1007/s00606-006-0418-9
Article
Google Scholar
Betekhtin A, Jenkins G, Hasterok R (2014) Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting. PloS one, 9(12), e115108. https://doi.org/10.1371/journal.pone.0115108
Braz GT, He L, Zhao H, Zhang T, Semrau K, Rouillard JM, Torres GA, Jiang JM (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523. https://doi.org/10.1534/genetics.117.300344
Article
Google Scholar
Hemleben V, Zentgraf U (1994) Structural Organization and Regulation of Transcription by RNA Polymerase I of Plant Nuclear Ribosomal RNA Genes. In: Nover L (ed) Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation (A Series of Topical Volumes in Developmental Biology), vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48037-2_1
Chapter
Google Scholar
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C (2011) Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet. 12:88. https://doi.org/10.1186/1471-2156-12-88
Article
Google Scholar
JS H‐H, Schwarzacher T (2011) Organization of the plant genome in chromosomes. The Plant Journal 66:18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x
Article
Google Scholar
Mondin M, Aguiar-Perecin ML (2011) Heterochromatin patterns and ribosomal DNA loci distribution in diploid and polyploid Crotalaria species (Leguminosae, Papilionoideae), and inferences on karyotype evolution. Genome. Sep; 54:718-26. https://doi.org/10.1139/g11-034
Battistin A, Biondo E, Coelho LGM (1999) Chromosomal characterization of three native and one cultivated species of Lathyrus L. in Southern Brazil. Genet Mol Biol 22:557–563. https://doi.org/10.1590/S1415-47571999000400016
Arzani A (2006) Karyotype study in some Lathyrus L. accession of Iran. Iran J Sci Technol 30:9–17
Google Scholar
Badr SF (2007) Karyotype Analysis and Chromosome Evolution in Species of Lathyrus (Fabaceae). Pakist J Biol Sci 10:49–56. https://www.pjbs.org
Lavania UC, Sharma AK (1980) Giemsa C Banding in Lathyrus L. Botanical Gazette 141:199–203. https://doi.org/10.1086/337145
Article
Google Scholar
Ünal F, Wallace AJ, Callow RS (1995) Diverse heterochromatin in Lathyrus. Caryologia 48:47–63. https://doi.org/10.1080/00087114.1995.10797317
Article
Google Scholar
Ali HBM, Meister A, Schubert I (2000b) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43: 1027-1032. 10.1139/g00-070
Ali HBM, Abd Elhady EA, Barakat HM (2005) DAPI-banding patterns in six Lathyrus species. Egypt J Genet Cytol 34:267–279
Google Scholar
Murray B, Bennett M, Hammett K (1992) Secondary constrictions and NORs of Lathyrus investigated by silver staining and in-situ hybridization. Heredity 68:473–478. https://doi.org/10.1038/hdy.1992.68
Article
Google Scholar
Nandini A.V., Cytogenetics and interspecific hybridization in Lathyrus L., Ph.D. thesis, The University of Auckland, New Zealand 1997. https://researchspace.auckland. ac.nz/docs /uoa-docs/rights.htm
Ceccarelli M, Ceccarelli M, Sarri V, Polizzi E, Andreozzi G, Cionini PG (2010) Characterization, Evolution and Chromosomal Distribution of Two Satellite DNA Sequence Families in Lathyrus species. Cytogenet Genome Res 128:236–244. https://doi.org/10.1159/000298852
Article
Google Scholar
Chalup L, Grabiele M, Neffa VS et al (2012) Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae). Plant Syst Evol 298:761–773. https://doi.org/10.1007/s00606-011-0587-z
Article
Google Scholar
Chalup L, Samoluk SS, Neffa VS et al (2015) Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping. J Plant Res 128:893–908 https://doi.org/10.1007/s10265-015-0756-1
Article
Google Scholar
Murray BG (2016) The 2016 Banks Memorial Lecture: Cytogenetics and ornamental plant breeding: An ongoing partnership. New Zealand Garden Journal 19:14–18
Google Scholar
Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13: 867-876. 10.1046/j.1365-313X.1998.00086.x
Gottlob-McHugh SG, Lévesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494. https://doi.org/10.1139/g90-072
Article
Google Scholar
Battistin A, Fernández A (1994) Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330. https://doi.org/10.1080/00087114.1994.10797311
Article
Google Scholar
De KK, Pal TK, Mondal A, Majumder M, Ghorai A (2018) Extended centromere and chromosomal mosaicism in some varieties of grass pea, Lathyrus sativus L. The Nucleus 62:21–30. https://doi.org/10.1007/s13237-018-0245-8
Article
Google Scholar
Sharma AK, Datta PC (1959) Application of improved technique in tracing karyotype differences between strains of Lathyrus odoratus L. Cytologia 24:389–402. https://doi.org/10.1508/cytologia.24.389
Article
Google Scholar
Fouzaar A, Tandon SL (1975) Cytotaxonomic investigations in the genus Lathyrus. Nucleus 18:24–44.
Nandini AV, Murray BG, O’Brien IEW, Hammett KRW (1997) Intra- and interspecific variation in genome size in Lathyrus (Leguminosae). Botanical Journal of the Linnean Society 125(4):359–366. https://doi.org/10.1111/j.1095-8339.1997.tb02265.x
Article
Google Scholar
Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Phys 55:496–501. https://doi.org/10.1104/pp.55.3.496
Article
Google Scholar
Gall JG (1981) Chromosome structure and the C-value paradox. J. Cell Biol 91:3s–14s. https://doi.org/10.1083/jcb.91.3.3s
Article
Google Scholar
Bobola MS, Smith DE, Klein AS (1992) Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol Biol Evol 9: 125–137. https://doi.org/10.1093/oxfordjournals.molbev.a040702
Lloyd AD, Mellerowicz EJ, Riding R, Little CHA (1996) Changes in nuclear genome size and relative ribosomal gene content in cambial region cells of Abies balsamea shoots during the development of dormancy. Can J Bot 74:290–298. https://doi.org/10.1139/b96-035
Article
Google Scholar
Široký J, Lysák MA, Doležel J et al. (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9:387–393. https://doi.org/10.1023/A:1016783501674
Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46(1):48–50 10.1139 /g02-103
Article
Google Scholar
Kolano B, Siwinska D, McCann J, Weiss-Schneeweiss H (2015) The evolution of genome size and rDNA in diploid species of Chenopodium s.l. (Amaranthaceae). Botanical J. of the Linnean Society 179(2):218–235. https://doi.org/10.1111/boj.12321
Hoang PTN, Schubert V, Meister A et al. (2019) Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci Rep 9, 3234. https://doi.org/10.1038/s41598-019-39332-w
Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389–394. https://doi.org/10.1007/s00412-012-0368-7
Article
Google Scholar
Garcia S, Kovařík A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89:1020–1030. https://doi.org/10.1111/tpj.13442
Article
Google Scholar
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontología Electrónica 4(1):1–9 http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Google Scholar
Badr A, El Shazly H, El Rabey H, E. Watson L (2002) Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Can J Bot (80):962–969. https://doi.org/10.1139/b02-084
Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209. https://doi.org/10.3732/ajb.92.7.1199
Asmussen CB, Liston A (1998) Chloroplast DNA Characters, Phylogeny, and Classification of Lathyrus (Fabaceae). Am J of Bot 85:387–401. https://doi.org/10.2307/2446332