Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. Khan M., Zaidi A., Musarrat J. Phosphate solubilizing microorg. Springer, Cham, p. 31-62. doi:https://doi.org/10.1007/978-3-319-08216-5_2.
Damam M, Kaloori K, Gaddam B, Kausar R (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharm Sci Rev Res 37(1):130–136
Google Scholar
Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181. https://doi.org/10.1007/s00284-010-9674-6
Article
Google Scholar
Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrr in Enterobacter cloacae UW5. J Bacteriol 190(21):7200–7208. https://doi.org/10.1128/JB.00804-08
Article
Google Scholar
Ali B (2015) Bacterial auxin signaling: comparative study of growth induction in Arabidopsis thaliana and Triticum aestivum. Turk J Botany 39(1):1–9
Google Scholar
Granada CE, Strochein M, Vargas LK, Bruxel M, Sá ELSD, Passaglia LM (2014) Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants. Genet Mol Biol 37(2):396–405
Article
Google Scholar
Sziderics AH, Rasche F, Trognitz F, Sessitsch AWE (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):1195–1202. https://doi.org/10.1139/W07-082
Article
Google Scholar
Singh J, Singh P, Ray S, Rajput RS, Singh HB (2019) Plant growth-promoting rhizobacteria: benign and useful substitute for mitigation of biotic and abiotic stresses. Plant Growth Promot. Rhizobacteria Sustain. Stress Manag. Springer, Singapore, p. 81–101. doi:https://doi.org/10.1007/978-981-13-6536-2_5.
Wani S, Kumar V, Shriram V, Sah S (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176
Article
Google Scholar
Upreti KK, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. In: Rao N, Shivashankara K, Laxman R (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp 19–46. https://doi.org/10.1007/978-81-322-2725-0_2
Chapter
Google Scholar
Iqbal N, Umar S, Khan N, Khan M (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42
Article
Google Scholar
Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D et al (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921. https://doi.org/10.1007/s11356-014-3754-2
Article
Google Scholar
Sheng X, Xia J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042
Article
Google Scholar
Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. Bact. Agrobiol. Crop Ecosyst. Springer, Berlin, Heidelberg, p. 1-36. doi:https://doi.org/10.1007/978-3-642-18357-7_1.
Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98(4):451–457. https://doi.org/10.1094/phyto-98-4-0451
Article
Google Scholar
Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x
Article
Google Scholar
Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64(4):574–587. https://doi.org/10.1080/03650340.2017.1362105
Article
Google Scholar
Belimov AA, Puhalsky IV, Safronova VI, Shaposhnikov AI, Vishnyakova MA, Semenova EV et al (2015) Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium-polluted soils. Water Air Soil Pollut 226(8):264. https://doi.org/10.1007/s11270-015-2537-9
Article
Google Scholar
Theunis M, Prinsen E, Kobayashi H, Broughton WJ (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 17(10):1153–1161. https://doi.org/10.1094/MPMI.2004.17.10.1153
Article
Google Scholar
Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161(4):362–366
Article
Google Scholar
Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320
Article
Google Scholar
Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Müller J (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant 41(6):91. https://doi.org/10.1007/s11738-019-2881-2
Article
Google Scholar
Chandra S, Askari K, Kumari M (2018) Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol 16:581–586. https://doi.org/10.1016/j.jgeb.2018.09.001
Article
Google Scholar
Shoukry AA, El-Sebaay HH, El-Ghomary AE (2018) Assessment of indole acetic acid production from rhizobium leguminosarum strains. Curr Sci Int 7:60–69
Google Scholar
Fadil M, Farah A, Ben SM, Rachiq S (2015) Optimisation des paramètres influençant l’hydrodistillation de Rosmarinus officinalis L. par la méthodologie de surface de réponse optimization of parameters influencing the hydrodistillation of Rosmarinus officinalis L. by response surface methodology. J Mater Environ Sci 6(8):2346–2357
Google Scholar
Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110(5):1235–1244. https://doi.org/10.1111/j.1365-2672.2011.04976.x
Article
Google Scholar
Harikrishnan H, Shanmugaiah V, Balasubramanian N (2014) Optimization for production of indole acetic acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int J Curr Microbiol Appl Sci 3(8):158–171
Google Scholar
Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr Microbiol 61(3):217–225. https://doi.org/10.1007/s00284-010-9600-y
Article
Google Scholar
Sasirekha B, Shivakumar S (2012) Statistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth. J Soil Sci Plant Nutr 12(4):863–873
Google Scholar
Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. IBP Handb 15Blackwell Sci Publ Oxford.
Beck D, Materon L, (1993) Practical Rhizobium-legume technology manual. Practical Rhizobium-legume technology manual., vol(19).
Berrada H, Nouioui I, Houssaini M, Ghachtouli N, Gtari M, Fikri Benbrahim K (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of fez, Morocco. African J Microbiol Res 6(25):5314–5324
Google Scholar
Bric JM, Bostock RM, Silverstonet SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538
Article
Google Scholar
Dhabhai K, Batra A (2010) Hormonal regulation impact on regeneration of Acacia nilotica L. a nitrogen fixing tree. World Appl Sci J 11(9):1148–1153
Google Scholar
Gantait S, Kundu S, Das P (2018) Acacia: an exclusive survey on in vitro propagation. J Saudi Soc Agric Sci 17(2):163–177
Google Scholar
Satrani B, El Ouadihi N, Guedira A, Frey-Klett P, Arahou M, Garbaye J (2009) Effet de la bactérisation des graines Sur la croissance des plants de Cedrus atlantica Manetti. Biotechnol Agron Société Environ 13(3):367–372
Google Scholar
Reddy MS, Rahe JE, Levesque CA (1992) Influence of onion seed bacterization on germination and mycosphere microflora of Sclerotium cepivorum sclerotia. Can J Microbiol 38(11):1135–1143. https://doi.org/10.1139/m92-186
Article
Google Scholar
Fadil M, Fikri-Benbrahim K, Rachiq S, Ihssane B, Lebrazi S, Chraibi M et al (2018) Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: optimization of antibacterial activity by mixture design methodology. Eur J Pharm Biopharm 126:211–220. https://doi.org/10.1016/j.ejpb.2017.06.002
Article
Google Scholar
Rejili M, Mahdhi M, Ferchichi A, Mars M (2009) Natural nodulation of five wild legumes in the south of Tunisia. Plant Biosyst 143:34–39. https://doi.org/10.1080/11263500802633238
Article
Google Scholar
Vasconcellos R, Silva M, Ribeiro C, Cardoso E (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric 67(6):743–746
Article
Google Scholar
Bhargava Y, Murthy JSR, Kumar TVR, Rao MN (2016) Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv Microbiol 6(1):1–12. https://doi.org/10.4236/aim.2016.61001
Article
Google Scholar
Bhattacharyya R, Pati B (2000) Growth behaviour and indole acetic acid (IAA) production by a rhizobium isolated from root nodules of Alysicarpus vaginalis DC. Acta Microbiol Immunol Hung 47(1):41–51
Google Scholar
Datta C, Basu P (2000) Indole acetic acid production by a rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155(2):123–127
Article
Google Scholar
Ghosh S, Sengupta C, Maiti TK, Basu PS (2008) Production of 3-indolylacetic acid in root nodules and culture by a rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungo. Folia Microbiol (Praha) 53(4): p 351. https://doi.org/10.1007/s12223-008-0054-6
Kumar P, Ram M (2012) Production of indole acetic acid by rhizobium isolates from Vigna trilobata (L) Verdc. African J Microbiol Res 6(27):5536–5541
Google Scholar
El-Shanshoury AR (1995) Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis, in relation to their effect on wheat development. J Agron Crop Sci 175(2):119–127. https://doi.org/10.1111/j.1439-037X.1995.tb01137.x
Article
Google Scholar
Arora PK, Sharma A, Bae H (2015) Microbial degradation of indole and its derivatives. J Chem 2015:13. https://doi.org/10.1155/2015/129159
Article
Google Scholar
Shende R, Patil M (2011) Growth behaviour and indole acetic acid (IAA) production by a Rhizobium sp. isolated from Cajanus cajan plant. Int J Pharma Bio Sci 2(4):621–628
Google Scholar
Hozzein WN, Rabie W, Ali MIA (2011) Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new desert Streptomyces strain. African J Biotechnol 10(12):2295–2301. https://doi.org/10.5897/AJB10.1973
Article
Google Scholar
Santiago CD, Yagi S, IjiMa M, NashiMoto T, SawaDa M, IkeDa S et al (2017) Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes Environ 32(1):14–23. https://doi.org/10.1264/jsme2.ME16127
Article
Google Scholar
Judd LA, Jackson BE, Fonteno WC (2015) Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 4(3):369–392. https://doi.org/10.3390/plants4030369
Article
Google Scholar
Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356
Article
Google Scholar
Slavov S, Van Onckelen H, Batchvarova R, Atanassov A, Prinsen E (2004) IAA production during germination of Orobanche spp. seeds. J Plant Physiol 161(7):847–853
Article
Google Scholar
Ljung K, Anders O, Lioussanne L, Sandberg G (2001) Developmental regulation of indole-3-acetic acid turnover in scots pine seedlings. Plant Physiol 125(1):464–475
Article
Google Scholar
Leong PP (2015) Production and optimization of Indole-3-acetic acid by Rhodopseudomonas Palutris. Universiti Teknologi Malaysia
Ghosh A, Basu P (2002) Growth behaviour and bioproduction of indole acetic acid by a rhizobium sp. isolated from root nodules of a leguminous tree Dalbergia lanceolaria. Indian J Exp Biol 40(7):796–801
Google Scholar