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Abstract 

Purpose It is important to comprehend how the molecular mechanisms shift when gastric cancer in its early stages 
(GC). We employed integrative bioinformatics approaches to locate various biological signalling pathways and molec-
ular fingerprints to comprehend the pathophysiology of the GC. To facilitate the discovery of their possible biomark-
ers, a rapid diagnostic may be made, which leads to an improved diagnosis and improves the patient’s prognosis.

Methods Through protein–protein interaction networks, functional differentially expressed genes (DEGs), and path-
way enrichment studies, we examined the gene expression profiles of individuals with chronic atrophic gastritis 
and GC.

Results A total of 17 DEGs comprising 8 upregulated and 9 down-regulated genes were identified from the microar-
ray dataset from biopsies with chronic atrophic gastritis and GC. These DEGs were primarily enriched for CDK regula-
tion of DNA replication and mitotic M-M/G1 phase pathways, according to KEGG analysis (p > 0.05). We discovered 
two hub genes, MCM7 and CDC6, in the protein–protein interaction network we obtained for the 17 DEGs (expanded 
with increased maximum interaction with 110 nodes and 2103 edges). MCM7 was discovered to be up-regulated 
in GC tissues following confirmation using the GEPIA and Human Protein Atlas databases.

Conclusion The elevated expression of MCM7 in both chronic atrophic gastritis and GC, as shown by our compre-
hensive investigation, suggests that this protein may serve as a promising biomarker for the early detection of GC.
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Background
One of the most frequent and dangerous malignancies 
in the world, particularly among elderly men, is gastric 
cancer (GC). Based on WHO data, GC is the 6th most 
common neoplasm (1.09 million cases) and the 4th 
most lethal cancer [1]. The mucous membrane lining 
the stomach comprises columnar epithelial cells and 
glands. These cells are prone to gastritis, an inflamma-
tion that can develop into peptic ulcers and, eventu-
ally, stomach cancer. GC is thought to be preceded by 
chronic atrophic gastritis (CAG). Although the actual 
aetiology of atrophic gastritis is uncertain, Helicobacter 
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pylori (H. pylori) bacteria are recognised to be the most 
common cause [2].

Normal stomach epithelium is the first step in the 
Correa cascade of gastric carcinogenesis, which pro-
gresses through chronic non-atrophic gastritis, CAG, 
intestinal metaplasia (IM), and dysplasia [3]. CAG is 
frequently brought on by anomalies in a number of sig-
nalling pathways, including those that regulate apopto-
sis, the immune system, and inflammation. The signal 
will transmit extracellular information into the cell as it 
is exposed to external stimuli, causing the transcription 
of the right target genes and regulating cell activity [4]. 
It is necessary to modify signal transduction pathways 
to prevent GC or reverse CAG. Premalignant gastric 
lesions (CAG, IM, or dysplasia) enhance the likelihood 
of developing GC in a person. Early diagnosis of these 
conditions is essential for successful treatment and GC 
screening [5]. The clinical diagnosis of GC has devel-
oped in recent years, with promising biomarkers such 
as E-cadherin, p27, HER2, cyclin E, c-myc, and p53 [6]. 
The diagnosis of GC is made using invasive methods, 
such as endoscopic ultrasound screening, computed 
tomography, magnetic resonance imaging, and gastros-
copy with biopsy and histological analysis [7]. Addition-
ally, the concentrations of biochemical tumour markers 
including the carcinoembryonic antigen (CEA), car-
bohydrate antigen (CA19-9), and cancer antigen 72–4 
(CA72-4) are crucial in the diagnosis of patients with 
this malignancy, but they cannot be utilised to identify 
GC early [8].

In recent years, biomarkers linked with tumour devel-
opment, diagnosis, and prognosis have been discovered 
using several bioinformatics methodologies [9–12]. How-
ever, review of accessible literature indicated that no bio-
markers have been identified that can be used to predict 
the progression of CAG to GC. Novel blood biomarkers 
are therefore required to enhance the diagnostic process, 
particularly the early detection of this disease, increase 
the likelihood of successful therapy, and increase the 
number of cancer survivors. Understanding the changes 
in molecular pathways that occur during the early stages 
of GC development and identifying relevant biomark-
ers can lead to a faster diagnosis and a better prognosis 
for patients [13]. The molecular mechanism that leads to 
the progression of CAG to GC is unknown. Identifying 
genes linked to GC development and prognosis, as well 
as elucidating the underlying molecular pathways, is crit-
ical. Through bioinformatic analysis of Gene Expression 
Omnibus (GEO) datasets, we aimed to identify putative 
pathogenic and prognostic differentially expressed genes 
(DEGs) in CAG that resulted in GC. A pipeline starting 
with an analysis of DEG from GEP dataset followed by 
functional enrichment and subsequent cross verification 

by multiple dataset analysis has helped us develop poten-
tially unique and specific diagnostic biomarkers.

Methods
Microarray data collection, pre‑processing, 
and differentially expressed gene extraction
The Gene Expression Omnibus (http:// www. ncbi. nlm. 
nih. gov/ geo/) database was used to retrieve the micro-
array data (accession number: GSE116312) based on the 
platform of [HuGene-1 0-st] Affymetrix Human Gene 1.0 
ST Array [transcript (gene) version]. RNA from biopsies 
of patients (n = 13) with CAG, follicular gastritis (FG), 
and GC was examined using microarrays. The data set 
comprised seven FG biopsy samples, three CAG biopsy 
samples, and three GC biopsy samples.

The data was presented using a gene expression matrix. 
To transfer the probe data to a gene annotation file, the 
gene mean value in various samples has to be distributed 
uniformly across all samples. If multiple probes were 
matched for a gene, the average of all probe results would 
represent the gene’s expression. The missing value was 
located using the k-Nearest Neighbour function of the 
R impute package (https:// bioco nduct or. org/ biocL ite.R). 
The limma package in Bioconductor R (https:// bioco 
nduct or. org/ biocL ite.R) was used to identify genes that 
were differentially expressed between CAG-GC, CAG-
FG, and FG-GC. The log2fold change was estimated 
(log2FC). The cut-off values for the DEGs screening were 
|log2FC|> 2 and a false discovery rate (FDR) of 0.05. In 
order to analyse biological pathways, interaction network 
enrichment analysis, and gene functional annotation, 
these DEGs will be used.

DEGs intersection and common DEGs finding
The data mining technique is employed to locate eligible 
data and common genes among CAG, FG, and GC. The 
couplings between CAG-FG, FG-GC, and CAG-GC are 
studied to determine the intersection of genes between/
among these three disorders. The intersection result can 
be used to guide future study and identify shared genes. 
The final shared gene between CAG-FG-GC facilitates 
effective biomarker discovery and/or drug design.

Construction of protein–protein interaction (PPI) network
The STRING (Search Tool for the Retrieval of Interact-
ing Genes) database is a pre-computed global resource 
for assessing PPI data [14]. The PPIs comprise a vast 
and complex regulatory network that has been linked to 
numerous physiological and pathological processes [15]. 
The edges of the PPI network show interactions between 
nodes, and each node in the network represents a gene. 
High-degree nodes are categorised as hub genes with 
significant biological functions since they have a large 
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number of edges connecting them to other nodes. In this 
study, the PPI network of common DEGs was analysed 
using the STRING online tool. Using cystoscope 3.9.1 
[16], interactions of common DEGs with a confidence 
score of > 0.4 and a maximum number of interactions 
in the first shell as 100 were chosen for research. The 
PPI network’s genes were further examined in terms of 
degree centrality, betweenness centrality (BC), and sub-
graph centrality using the Network Analyzer [17].

Identification of key genes by centralities based 
topological analysis of the protein interaction network 
(PIN)
A network of nodes with varying degrees of connectiv-
ity can be used to illustrate the molecular organisation. 
A protein is represented by each node, and the edges 
denote dynamic interactions. As a result, nodes get input 
and output values from mathematical functions [18]. 
To comprehend how the intricate interactions between 
DEGs function, the PIN was developed. The biological 
significance of proteins was ascertained using topologi-
cal centrality metrics with Network Analyse, a Cytoscape 
3.9.1 plugin. Nodes in a network are frequently assessed 
using the three key metrics in network theory, such as 
the connection degree (k), BC, and closeness centrality 
(CC) value of nodes [19]. The number of nodes, linking 
elements at each node, network breadth, radius, density, 
number of neighbours at each node, clustering coeffi-
cient, and average shortest path length are further topo-
logical attributes [17].

Interactomics analysis of hub gene
Hub genes are crucial components with the highest 
degree of interconnection and are crucial for compre-
hending the paths of biological networks. In order to 
examine the functional significance of the cellular map 
in identifying biomarkers and therapeutic targets, inter-
actomics analysis portrays molecular interaction net-
works with physical links between neighbours [20]. We 
identified the top hub gene, close neighbourhood rank-
ing network for addressing the gene’s novel function in 
the context of biological reactions using the Biological 
General Repository for Interaction Datasets (BioGRID) 
(BioGRID 4.4). The hub gene networks were selected 
using physical interactions and degree evidence ( ≥ 70).

Gene Ontology (GO) and molecular pathways analysis 
of DEGs
The primary bioinformatics method for integrating the 
characterisation of genes and gene products is GO analy-
sis [21]. GO words fall into three categories: biological 
process, molecular function, and cellular component. 
Using taking into account statistically significant P > 0.05, 

DEGs for GO keywords were enhanced and examined by 
ShinyGO v0.741 [22]. EnrichR, a comprehensive gene set 
bioinformatics web tool, was used for pathway enrich-
ment studies to investigate the common DEGs’ shared 
molecular signalling pathways. To find biological net-
work pathways of DEGs in CAG, FG, and GC, we used 
pathway enrichment analyses from six databases, includ-
ing KEGG [23], Rectome, Wiki, Panther, BioCarta, and 
BioPlanets. When choosing the top mentioned paths, we 
used the usual metric of P > 0.05.

Recognition of transcriptional factors with connecting PPI 
network
Transcription factors (TFs) play a crucial part in a num-
ber of biological pathways by interacting in the vast pro-
tein complex network created by PPIs, which initiates 
and controls the transcription of genetic material [24]. 
We identified the main transcriptional factors using the 
hypergeometric p-value and the X2K web tool (regula-
tory networks platform) from the ChIP-seq experiments 
(ChEA) database [25]. Based on DEG signatures, the 
X2K online tool creates inferred TFs networks with con-
nected PPI, producing upstream regulatory pathways. 
We discovered TFs by identifying proteins that physi-
cally interact with these transcription factors using the 
Genes2Networks (G2N) technique [26]. G2N is a power-
ful command-line and web-based programme that analy-
ses genomic and proteomic data to interpret DEGs based 
on experimentally verified PPIs or protein complexes. 
With the use of this technology, researchers can filter TFs 
with links in protein network complexes to learn more 
about cell signalling cascades.

Identification of protein kinase connecting with TFs 
and PPI
Phosphorylated targeted proteins are activated by pro-
tein kinases (PTKs), which are enzymes that dynamically 
control signalling proteins. PTKs were discovered using 
the kinase enrichment analysis (KEA) module of X2K. 
Mammalian protein DEG lists can be matched with the 
protein kinases predicted to phosphorylate them using 
the command-line tool KEA [27]. We also developed 
a regulatory kinase–substrate network that included 
PTKs, PPIs, and TFs with phosphorylation inside the 
extended subnetwork. The kinase–substrate network was 
developed using the human protein reference database 
(HPRD), PhosphoSite, phospho.ELM, NetworKIN, and 
Kinexus (www. kinex us. ca).

Analysis of biological pathways in CAG, FA and GC
Biological pathway enrichment analysis of DEGs found 
in CAG, FA, and GC was performed using the FunRich 

http://www.kinexus.ca
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tool (http:// www. funri ch. org) against the human FunRich 
background database [28].

Determination of mRNA expression levels of hub genes
Gene Expression Profiling Interactive Analysis (GEPIA) 
databases were used to analyse the mRNA expression 
levels of the hub genes in GC [29]. The GEPIA v1.0 does 
DEGs analysis, correlation analysis, patient survival anal-
ysis, similar gene recognition, and dimensionality reduc-
tion analysis based on the data from TCGA and GTEx. 
In this study, we utilised GEPIA to determine the expres-
sion of two hub genes with a threshold of P > 0.05 and a 
fold change of 2. An online tool called the Kaplan–Meier 
plotter [30] allows users to investigate the effect of 54,000 
genes on survival in 21 different cancer types, including 
the largest datasets are for breast cancer (n = 6234), ovar-
ian cancer (n = 2190), lung cancer (n = 3452), and gastro-
intestinal cancer (n = 1440). The major objective of the 
tool is to identify and validate survival biomarkers. Based 
on the GC database, a Kaplan–Meier Plotter online sur-
vival analysis of the key genes was performed. With 95% 
confidence intervals, the hazard ratio (HR) and log rank 
P-values were calculated.

Determination of the protein expression levels of the hub 
genes
The human protein atlas database (HPA v18.1) provides 
a wealth of transcriptome and proteome data from RNA-
sequencing and immunohistochemistry research. The 
amount of each hub protein was assessed in this study 
using immunohistochemistry information from the HPA 
database.

Results
Screening and identification of DEGs
Between CAG and GC, 92 DEGs were found, with 80 
up-regulated and 12 down-regulated genes (Fig. 1A and 
Supplementary Table S1A). A total of 210 DEGs for FG 
and GC were found, including 121 up-regulated and 89 
down-regulated genes (Fig. 1B and Supplementary Table 
S1B). In the meantime, 89 DEGs were found for CAG-
FG, with 22 up-regulated and 67 down-regulated genes 
(Fig. 1C and Supplementary Table S1C).

Identification of common DEGs
For this analysis, we used GEO2R tool of NCBI to find 
genes that are intersected among FG, CAG and GC. The 
intersection sets for FG, CAG, and GC are FG-CAG, 
GC-FG, and CAG-GC. The FG-CAG, GC-FG, and CAG-
GC intersected genes are 421, 416, and 69, respectively. 
To determine the common genes among three groups, 
intersection of FG-CAG-GC was performed and a total 
of 17 gene is found in common, i.e., CLDNI, CLDN4, 
NPNT, ABHD11, PLOD3, MCM7, TNFSF4, P4HB, CAC-
NA1A, CIDEC, ENTPD3, DERL3, KCNE2, PGA4, PGA3, 
PGA5, and LIPF (Fig. 2 and Supplementary Table S2).

PIN construction
We constructed the functional and physical network of 
the PPI between the DEGs of FG-CAG-GC by using the 
STRING database. To achieve the maximum number of 
interactions between DEGs and interacting functional 
partners, the network was further extended. The interac-
tion score > 0.4 criteria was applied to a PPIs network of 
DEGs, and the minimum number of interactions was set 
to 50 in both shell1 and shell2, which led 110 nodes and 
2103 edges (Fig. 3A). The two nodes that were chosen at 

Fig. 1 Volcano plot of all DEGs from a gastric cancer and follicular gastritis, b follicular gastritis and chronic atrophic gastritis, c chronic atrophic 
gastritis and gastric cancer, screening criteria: P < 0.05 and |log2FC|> 2. Up-regulated and down-regulated DEGs are indicated by red and blue, 
respectively. DEGs or differentially expressed genes, are a type of fold change analysis

http://www.funrich.org
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random, the BC, degree, and the average clustering coef-
ficient of the network nodes are all connected via the net-
work’s shortest paths (Supplementary Table S3). A few 
closely coupled nodes made up the majority of the core 
network, it was discovered. Other nodes have a few char-
acteristics that are common to the PPI network.

Interactomics analysis of hub gene
Modern systems biology approaches that produce a rich 
context for protein function include interactomics as a 
key component. The interactome study only takes into 
account the expected physical network of PPIs with a 
score > 0.5. The amount of proteins interactions inside the 
PPI network was shown by the degree value of the hub 
genes, which was determined by the results of the topo-
logical analysis. We found the top 10 hub genes (MCM7, 
CDC6, CDC45, MCM2, MCM4, CDK1, MCM3, CDK2, 
PCNA, and RFC4) using the Network Analyst, which are 
highly nodes degree connections and reveal the thera-
peutic targets of GC. In order to address the novel role 
of the gene in the context of biological responses, we 
also carried out an investigation of interactomics-based 
interaction and degree evidence (k = 70) of top hub gene 
interactions with close neighbourhood proteins. Last but 
not least, we evaluated the interactome networks of hub 
genes like MCM7 and CDC6 (Fig. 3B and C), especially in 
relation to predictive biomarker for GC.

Functional enrichment analysis of the DEGs
The biological functions of 114 genes were determined 
using the GO enrichment analyses that were performed 
for both up-regulated and down-regulated DEGs. The 
three distinct ontologies that the GO analysis is devel-
oping were annotated using the GO term database 
(biological process (BP), cellular component, and molec-
ular function (MF)). GO enrichment analysis of up- and 
down-regulated DEGs across three categories at P-value 
threshold less than 0.5 is also shown, along with a selec-
tion of human species (BP, MF, and cellular component) 
(Supplementary Figure S1).

Following analysis of the GO enrichment results for 
the BP category, we revealed that DEGs were signifi-
cantly enriched in the GO terms for nuclear cell cycle 
DNA replication, pre-replicative complex assembly, 
cell cycle DNA replication, double-strand break repair 
via break-induced replication, DNA strand elonga-
tion involved in DNA replication, DNA replication 
initiation, mitotic DNA replication, and DNA strand 
elongation (Supplementary Figure S1A). Addition-
ally, the CC category contained enriched DEGs for the 
DNA replication preinitiation complex, CMG com-
plex, alpha DNA polymerase:primase complex, GINS 
complex, replication fork protection complex, integ-
rin alpha8-beta1 complex, DNA replication factor C 
complex, origin recognition complex, nuclear origin of 
replication recognition complex, and MCM complex 

Fig. 2 VENN diagram representing common genes among three groups, intersection of FG-CAG-GC
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(Supplementary Figure S1B). We have shown that pro-
collagen-proline 4-dioxygenase activity, DNA replica-
tion origin binding, DNA clamp loading, protein-DNA 
loading ATPase activity, procollagen-proline dioxyge-
nase activity, binding of the mismatch repair complex, 
single-stranded DNA helicase activity, DNA helicase 
activity, single-stranded DNA binding, catalytic activ-
ity, and acting on DNA were the main enriched DEGs 
for the MF category (Supplementary Figure S1C).

Identification of crucial signalling pathways
One of the most important omics research techniques in 
the life sciences is pathways analysis, which aims to make 
sense of high-throughput biological data by identifying 
the biological signalling pathways involved in the gen-
esis of complex disorders. KEGG, Reactome, Wiki, Pan-
ther, BioCarta, and BioPlanets are only a few of the six 
pathways databases used in gene set enrichment analysis, 
which was carried out using the web-based bioinformat-
ics tool EnrichR. The top 10 signalling pathways based 

Fig. 3 A Protein–protein interactions networks of the DEGs, interactome network analysis based on the physical interaction and degree evidence 
(≥ 70) of top two hub genes interaction using the Biological General Repository for Interaction Datasets (BioGRID): B MCM7 and C CDC6
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on the significance of P > 0.01 were taken into considera-
tion when evaluating the pathways analysis associated to 
DEGs in FG-CAG-GC. All six databases share informa-
tion on DNA replication regulation by CDK, ATM sig-
nalling, G1 to S cell control, nucleotide excision repair, 
activation of the pre-replication complex, and cell repli-
cation (Fig. 4A–F).

Transcriptional regulatory networks analysis of DEGs 
related to FG‑CAG‑GC
The crucial molecules known as TFs directly maintain 
gene regulatory networks and control gene expression. 
The repression or activation of TFs, which are essential 
for many key cellular and biological processes and whose 
dysregulated TFs have been linked to the formation of 
neurological diseases, regulates the DEGs. With the help 
of the X2K online tool and the ChEA database, we iden-
tified the specific transcriptional factors impacting the 
expression of DEGs in FG-CAG-GC.

Our TFs enrichment analysis (TFEA) selected the 
top 20 candidates of TFs based on the hypergeomet-
ric p-value, including E2F transcription factor 4 (p107/
p130-binding) (ESF4), E2F transcription factor 1 (E2F1), 
E2F transcription factor 6 (E2F6), nuclear transcrip-
tion factor Y, alpha (NFYA), nuclear transcription fac-
tor Y, beta (NFYB), SIN3 transcription regulator family 
member A (SIN3A), interferon regulatory factor 3 
(IRF3), Forkhead boxes (FOXM1), zinc fingers (SP1), 
basic leucine zipper proteins (CREB1), basic leucine zip-
per proteins (FOS), homeoboxes (FBX3), RNA-binding 
motif containing (RBM) (NELFE), chromatin-modify-
ing enzymes (KAT2A), basic leucine zipper proteins 
(ATF2), zinc fingers (SP2), zinc fingers, tripartite motif-
containing (TRIM) (PML), basic leucine zipper proteins 
(CREB1), nuclear respiratory factor 1 (NRF1), and zinc 
fingers (AR) which could be shown altering gene func-
tion as CAG-GC disease progresses (Supplementary 
Figure S2). In order to evaluate the interactions between 
PPIs and TFs, we also employed the G2N method to 
find proteins that physically interact with these TFs. The 

Fig. 4 Functional enrichment of signalling pathways for the common DEGs in six pathway databases A KEGG, B Reactome, C Wikipathways, D 
BioPlanets, E BioCarta, and F Panther using a web-based bioinformatics programme EnrichR
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regulatory network of linked TFs and the proteins that 
they interact with physically and functionally was shown 
based on the degree of the nodes (Fig. 5).

Upstream regulatory pathway of kinase enrichment 
analysis
The kinase enrichment analysis result have shown that 
mitogen-activated protein kinase 14 (MAPK14), casein 
kinase 2, alpha 1 polypeptide (CSNK2A1), cyclin-
dependent kinases (CDK1, CDK2, and CDK4), glycogen 
synthase kinase 3 beta (GSK3B), homeodomain interact-
ing protein kinase 2 (HIPK2), mitogen-activated protein 
kinase 1 (MAPK1), ATM serine/threonine kinase (ATM), 
casein kinase 2 alpha 2 (CK2ALPHA), glycogen syn-
thase kinase 3β (GSK3BETA), mitogen-activated protein 
kinase 8 (JNK1), protein kinase, DNA-activated, cata-
lytic polypeptide (DNAPK), mitogen-activated protein 
kinase 3 (MAPK3), mitogen-activated protein kinase 3 
(ERK1), V-akt murine thymoma viral oncogene homolog 
1 (VKT1), protein kinase B alpha (PKBALPHA), DNA-
dependent protein kinase subunit (PRKDC), and check-
point kinase 1 (CHEK1) are the top protein kinases 
associated with FG-CAG-GC of intracellular signalling 
pathways (Supplementary Figure S3).

A kinase–substrate network, including PhosphoSite, 
phospho.ELM, NetworKIN, and Kinexus, was built using 
HPRD. The extended subnetwork of TFs and intermedi-
ate proteins was revealed by our bioinformatics research 

to have a regulatory kinase–substrate network that pro-
tein kinases activated phosphorylate substrates therein 
(Fig. 6).

Determination of metabolic pathways in FG, CAG, and GC 
that DEGs share
The probable metabolic pathways associated with FG, 
CAG, and GC were investigated using the FunRich soft-
ware. Our findings showed that the mitotic cell cycle 
(50%), DNA replication (46.51%), S-phase (40.70%), DNA 
synthesis (39.53%), mitotic G1-G1/S phase (34.88%), 
G1/S transition (34.88%), cell cycle checkpoints (33.72%), 
mitotic M-M/G1 phase (33.72%), G2/M checkpoints 
(32.56%), and activation of ATP in response to replication 
stress (31.40%) were the top 20 major biological pathways 
of FG-CAG (Supplementary Figure S4).

mRNA expression levels of hub genes
The two hub genes mRNA levels in tissue samples from 
GC and healthy individuals were compared using GEPIA. 
This showed that both genes were significantly expressed 
in GC specimens compared to usual stomach samples 
(P > 0.05, Fig. 7A–D).

Hub protein expression in cancer tissues
The Human Protein Atlas was used to analyse the two 
key DEGs’ protein expression in human GC tissue sam-
ples (Fig.  8). In contrast to the CDC6, which displayed 

Fig. 5 Transcription factor enrichment analysis with PPI network using Gene2Networks (G2N) algorithm. Pink nodes represent transcription factors 
and proteins connect with them in grey
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moderate expression levels, the MCM7 protein displayed 
varied expression across GC and healthy gastric tissue 
samples (Fig.  8A, B, C, and Supplemental Figure S5A) 
(Fig.  8E, F  and Supplementary Figure S5B). Further, the 
expression of MCM7 is quantified in stomach adeno-
carcinoma (STDA) based on normal and tumour sam-
ples were compared with and without H. pylori infection 
(Fig. 9) using UALCAN database (http:// ualcan. path. uab. 
edu/ analy sis. html) [31].

Discussion
In recent years, chronic gastritis has gained a clini-
cal focus despite being previously thought to be a com-
mon ageing occurrence and a non-pathological feature. 
Chronic gastritis is an immunopathological illness linked 
to H. pylori infection. CAG, a precursor stage of intesti-
nal-type GC, develops due to the infection’s persistence 
[32]. However, almost all GC patients experienced dis-
ease progression after treatment. The majority of GC 
cases are found to be in advanced stages, which leads 
in a relatively poor prognosis for survival. Identification 

of biomarkers or therapeutic targets is therefore crucial 
for enhancing GC diagnosis and prognosis [33]. Cur-
rently, it is understood that a long-term H. pylori infec-
tion is the basic cause of GC. Understanding how the 
molecular mechanisms of GC change in its early stages 
and finding potential biomarkers for the disease will help 
clinicians to make an early diagnosis, which will improve 
the prognosis for the patient. We employed a bioinfor-
matics strategy to analyse microarray dataset in order to 
find useful prognostic indicators for FG-CAG-GC. We 
assessed the degree and main centralities, such as BC and 
CC, for each of the identified genes and important com-
plexes (two clusters). In our analysis of the network and 
its subnetworks, the proteins MCM7 and CDC6 had the 
highest central indices (Figs. 3, 4 and 5). The application 
of networks or graph theory makes it possible to ana-
lyse various biological communication systems. PPI can 
be used to effectively understand and estimate the pos-
sibility of existing but unexplored connections between 
proteins/genes [34]. Many of the PINs have topologi-
cal properties that are linked to protein essentiality. Its 

Fig. 6 The enrichment analysis of kinase with transcription factors and PPI network. Red nodes represent the top transcription factors, blue nodes 
represent protein kinase, green network edges represent kinase-substrate phosphorylation interactions, grey edges represent physical protein–
protein interactions network and red nodes show transcription factors

http://ualcan.path.uab.edu/analysis.html
http://ualcan.path.uab.edu/analysis.html
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interconnectedness reveals the gene/relevance, proteins, 
and their topological roles, known as hubs, may be cat-
egorised depending on their location. A topological net-
work analysis should theoretically disclose proteins that 
could be exploited as biomarkers or therapeutic targets, 
according to the theory. As a result, looking at these pro-
teins could be a quick way to discover new GC genes and 
biomarkers [32]. Our research eventually led us to the 
conclusion that two genes (MCM7 and CDC6), which 
were all enriched for the CDK regulation of DNA repli-
cation and mitotic M-M/G1 phase pathway, were associ-
ated with prognosis for GC.

MCM7 is one of the essential mini-chromosome 
maintenance proteins required for the beginning of 
genomic replication [35]. A crucial component of the 
pre-replication complex, which is involved in the for-
mation of replication forks and the recruitment of addi-
tional proteins necessary for DNA replication, the MCM 
proteins form a hexameric protein complex [36]. Investi-
gations have shown that the MCM4, 6, and 7 complexes 

serve as a DNA unwinding enzyme and have DNA heli-
case activity [37]. More and more details about MCM7’s 
function in the development of cancer are becoming 
available since it has been discovered to be amplified 
and overexpressed in a number of human malignan-
cies [34]. The phosphorylation of MCM7 at Tyr-Y600 by 
EGFR, which promotes the proliferation of cancer cells, 
facilitates the creation and loading of the MCM com-
plex [38]. E2F1 may be crucial in the development of 
gastric cancer by influencing the cell cycle pathway and 
modulating its target gene MCM3, which may interact 
with MCM4, MCM5, and MCM7 [39]. In the 7q21–22 
area of the GC chromosome, numerous genes, includ-
ing SHFM1, MCM7, and COL1A2, have been identified 
as likely cancer candidate genes [40]. This amplicon con-
tains two polycistrionic miRNA clusters, and the miR-
106b-25 cluster, which is present in intron 13 of MCM7, 
was identified in the current investigation as being 
expressed in stomach tumours. The 7q21-22 amplifi-
cation, MCM7, and its intronic miR-25 have also been 

Fig. 7 Significantly expressed genes in gastric cancer patients compared to healthy individuals. Red: tumour tissue; grey: normal tissues (P < 0.05), A 
MCM7 and B CDC6. Survival plot and prognostic information of the 2 hub genes. Red: high expression; black: low expression, C MCM7 and D CDC6
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conclusively demonstrated to represent the three pri-
mary molecular switches in the complex oncogenic cir-
cuits of gastric cancer [40]. Examined were the roles and 
mechanisms of MCM7 amplification and overexpression 

in the development of oesophageal cancer. ESCC cells 
multiplied, formed colonies, and migrated more readily 
as a result of MCM7’s stimulation of the AKT1/mTOR 
signalling pathway [41].

Fig. 8 The hub protein expression in gastric cancer tissues. Images were taken from the Human Protein Atlas (http:// www. prote inatl as. org) online 
database (HE, × 4). A, B MCM7 protein expression for stomach cancer of male patient (age 62, Patient ID: 2105) was high. C, D MCM7 protein 
expression for stomach cancer of male patient (age 59, Patient ID: 2378) was high. E, F CDC6 protein expression for stomach cancer of male patient 
(age 55, Patient ID: 3492) was moderate

Fig. 9 Quantification of MCM7 expression in normal and tumour samples of stomach adenocarcinoma patients with or without H. pylori infection 
using UALCAN database (http:// ualcan. path. uab. edu/ analy sis. html)

http://www.proteinatlas.org
http://ualcan.path.uab.edu/analysis.html
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For the evaluation of GC and precancerous lesions, the 
combination of MCM7 and Ki67 may be more sensitive 
proliferation markers. We can do differential diagno-
sis in the pathological grade using MCM7 [42]. For GC 
patients, MCMs show potential diagnostic and prognos-
tic values. GC tumours and metastatic lymph nodes had 
higher MCM2 expression levels than normal tissues. The 
prognosis is favourable for GC patients whose tumours 
do not exhibit MCM2. Since they are more accurate pre-
dictors of prognosis than conventional Ki-67 and PCNA, 
MCM2 and MCM5 are both beneficial prognostic indica-
tors for GC patients. MCM2 helps to distinguish between 
gastric cardiac cancer and predicts stage III diffuse-type 
GC patients’ overall survival (OS) [43]. In individuals 
with diffuse-type GC, overexpressed MCM7 also indi-
cates a low disease-specific survival rate. MCM7 knock-
down reduces cell proliferation, colony formation, and 
invasion in AGS and NCI-N87 cells and is accompanied 
by an increase in apoptosis. In primary GC, gene ampli-
fication, somatic mutations, and mRNA upregulation are 
the key molecular mechanisms of MCMs [37].

One characteristic of the development of gastric 
tumours is the dysregulation of cell cycle components. 
Cell cycle progression is the outcome of cyclin-depend-
ent kinase (CDK) activation. In GC, cyclin D1 and D2 
expressions are up-regulated [44]. Additionally, in cocul-
tured GC cells with an infection from H. pylori, cyclin 
D1 is up-regulated [45, 46]. Our pathway enrichment 
analysis revealed that the identified hub genes were sig-
nificantly enriched in CDK regulation of DNA replication 
and mitotic M-M/G1 phase pathways. The mechanism 
of cellular proliferation produced by H. pylori infec-
tion is yet unknown, although H. pylori infection is also 
linked to increased cell proliferation of the host cells. In 
mammalian cells, the cell cycle, which controls the suc-
cessive production and degradation of cyclins and cyclin-
dependent kinases, regulates cellular proliferation. Cyclin 
D1 controls entry into the S phase and passing past the 
restriction point among other cyclins. Additionally, G1 
phase lengthening and cellular proliferation rate are also 
accelerated by overexpressing cyclin D1 [46].

CDC6 (cell division cycle 6) is a cell cycle protein criti-
cal for the initiation of DNA replication. CDC6 functions 
as a checkpoint control that ensures DNA replication 
is finished before mitosis is started. It also functions as 
a regulator in the early stages of DNA replication. Many 
diseases (Meier-Gorlin Syndrome 5, Meier-Gorlin Syn-
drome 1) and various types of cancers were found to 
involve the dysregulation of CDC6 [47]. It is believed that 
CDC6 played a role in the emergence and progression of 
numerous malignancies. For instance, the expression of 
CDC6 was up-regulated in glioblastoma multiforme and 

strongly correlated with a bad prognostic profile [48]. It 
has been demonstrated that downregulating CDC6 pre-
vents osteosarcoma carcinogenesis in both in  vivo and 
in vitro [49]. Upregulated CDC6 expression was found in 
tumours, and reduction of CDC6 expression had a strong 
inhibitory effect on cancer formation and carcinogen-
esis [50]. CDC6 is connected to the loading of the MCM 
complex onto chromatin and is one of the most prevalent 
chromosomal replication licensors [51]. According to 
earlier studies, CDC6 is an essential part of the pre-repli-
cation complex that is involved in DNA replication in all 
eukaryotes [4, 52]. Because of CDC6’s crucial function in 
DNA replication, it was assumed that by controlling rep-
lication-related activities, it may affect transcription and 
proliferation [53]. Dysregulation of CDC6 can cause car-
cinogenesis and the emergence of various malignancies. 
When the expression of CDC6 was lowered, the prolifer-
ative ability would be severely constrained [47]. The cur-
rent findings demonstrated that GC expressed MCM7 at 
a higher level than normal stomach tissue and the poten-
tial of MCM7 and CDC6 as a biomarker for GC patients.

Conclusion
The GEO dataset revealed that MCM7 was related to 
the prognosis of GC. Bioinformatic analysis has revealed 
these genes to be effective and trustworthy molecular 
indicators for the diagnosis and prognosis of GC, reveal-
ing a new and promising treatment target for the disease. 
Furthermore, pathway enrichment analysis demonstrated 
that these genes are important for the CDK regulation of 
DNA replication and the mitotic M-M/G1 phase path-
way. It is crucial to acknowledge the research’s limita-
tions, such as the fact that the crucial roles of these hub 
genes in the GC were only hypothetically inferred using 
public information. Additional experimental research is 
required to support the findings of the current study.
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