Sharma N, Kumar J, Abedin M, Sahoo D, Pandey A, Rai AK, Singh SP (2020) Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 20(1):1–17.
Liu K, Liu Y, Jiao N, Xu B, Gu Z, Xing T, Xiong J (2017) Bacterial community composition and diversity in Kalakuli, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan plateau. FEMS Microbiol Ecol 93:085. https://doi.org/10.1093/femsec/fix085
Article
Google Scholar
Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
Article
Google Scholar
Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2011). Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie Van Leeuwenhoek 100(2):245–257.
Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188. https://doi.org/10.1016/j.mimet.2004.04.006
Article
Google Scholar
Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102. https://doi.org/10.1016/j.mib.2015.05.005
Baker BJ, Lazar CS, Teske AP, Dick GJ (2015) Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3:1–2. https://doi.org/10.1186/s40168-015-0077-6
Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199. https://doi.org/10.1038/ismej.2011.189
Article
Google Scholar
Rathour R, Gupta J, Kumar M, Hiloidhari M, Mehrotra AK, Thakur IS (2017) Metagenomic sequencing of microbial communities from brackish water of Pangong Lake of the northwest Indian Himalayas. Genome Announc 5:e01029–e01017. https://doi.org/10.1128/genomeA.01029-17
Article
Google Scholar
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ (2014) Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front Microbiol 5:414. https://doi.org/10.3389/fmicb.2014.00414
Article
Google Scholar
Oyama D, Kishi LT, Santos-Júnior CD, Soares-Costa A, de Oliveira TC, de Miranda FP, Henrique-Silva F (2016) Metagenomics analysis of microorganisms in freshwater lakes of the Amazon Basin. Genome Announc 22:e01440–e01416. https://doi.org/10.1128/genomeA.01440-16 PMID: 28007865
Article
Google Scholar
Rathour R, Gupta J, Mishra A, Rajeev AC, Dupont CL, Thakur IS (2020) A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci Total Environ 731:139074. https://doi.org/10.1016/j.scitotenv.2020.139074
Article
Google Scholar
Llorens-Marès T, Catalan J, Casamayor EO (2020) Taxonomy and functional interactions in upper and bottom waters of an oligotrophic high-mountain deep lake (Redon, Pyrenees) unveiled by microbial metagenomics. Sci Total Environ 707:135929. https://doi.org/10.1016/j.scitotenv.2019.135929
Article
Google Scholar
Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362. https://doi.org/10.1111/j.1574-6941.2009.00728.x
Article
Google Scholar
Bhat FA, Yousuf AR, Aftab A, Arshid J, Mahdi MD, Balkhi MH (2011) Ecology and biodiversity in Pangong Tso (lake) and its inlet stream in Ladakh, India. Int J Biodivers Conserv 3:501–511
Google Scholar
Bryant JA, Lamanna C, Morlon H (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. PNAS 105:11505–11511. https://doi.org/10.1073/pnas.0801920105
Article
Google Scholar
Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574
Article
Google Scholar
Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb Ecol 69:135–145. https://doi.org/10.1007/s00248-014-0465-7
Article
Google Scholar
Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92(4):797–804. https://doi.org/10.1890/10-1170.1
Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67(2):208–218. https://doi.org/10.1111/j.1574-6941.2008.00620.x
Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55:564–577. https://doi.org/10.1139/W09-011
Article
Google Scholar
Chettri N, Sharma E, Deb DC (2005) Bird community structure along a trekking corridor of Sikkim Himalaya: a conservation perspective. Biol Conserv 102(1):1–16
Chettri N, Sharma E (2006) Prospective for developing a transboundary conservation landscape in the Eastern Himalayas. In: McNeely JA, McCarthy TM, Smith A, Whittaker OL (eds) Conservation Biology in Asia. Society for Conservation Biology Asia Section and Resources Himalaya, Kathmandu, Nepal, pp 21–44
Google Scholar
Kaur R, Rajesh C, Sharma R, Boparai JK, Sharma PK (2018) Metagenomic investigation of bacterial diversity of hot spring soil from Manikaran, Himachal Pradesh, India. Ecol Genet Genom 6:16–21
Google Scholar
Gupta V, Singh I, Rasool S, Verma V (2020) Next generation sequencing and microbiome’s taxonomical characterization of frozen soil of north western Himalayas of Jammu and Kashmir, India. Electron J Biotechnol 45:30–37
Article
Google Scholar
Kumar V, Kumar S, Singh D (2022) Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies. Extremophiles 26:1–11. https://doi.org/10.1007/s00792-021-01252-x
Article
Google Scholar
Shukla A, Garg PK, Srivastava S (2018) Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Front Environ Sci 6:81
Article
Google Scholar
Russell NJ (2003) Psychrophily and resistance to low temperature. In: Gerday C, Glansdorff N (eds) Extremophiles, Vol 2. EOLSS Publishers Co Ltd., pp 03–00
Venkatachalam S, Gowdaman V, Prabagaran SR (2015) Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan mountain ranges of India and Nepal. Microb Ecol 69(3):472–491. https://doi.org/10.1007/s00248-014-0476-4
Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107. https://doi.org/10.1016/s0167-7799(99)01413-4
Article
Google Scholar
Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26(5):457-470.
Pulicherla KK, Ghosh M, Kumar PS, Rao KRSS (2011) Psychrozymes- the next generation industrial enzymes. J Marine Sci Res Dev 1:102
Article
Google Scholar
Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K (1999) Biotechnology of enzymes from cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer-Verlag, Heidelberg, pp 17–34
Uma S, Jadhav RS, Seshu Kumar G, Shivaji S, Ray MK (1999) An RNA polymerase with transcriptional activity at 0°C from the Antarctic bacterium Pseudomonas syringae. FEBS Lett 453:313–317. https://doi.org/10.1016/s0014-5793(99)00660-2
Article
Google Scholar
Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 179:7803–7811. https://doi.org/10.1128/jb.179.24.7803-7811.1997
Article
Google Scholar
Margesin R (1999) Biotechnological applications of cold-adapted organisms: with 65 figures and 45 tables. Springer Science & Business Media
Berlemont R, Martiny AC (2015) Genomic potential for polysaccharides deconstruction in bacteria. Appl Environ 81:1513–1519. https://doi.org/10.1128/AEM.03718-14
Souza TV, Araujo JN, da Silva VM, Liberato MV, Pimentel AC, Alvarez TM, Squina FM, Garcia W (2015) Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent. Biotechnol Rep 9:1–8. https://doi.org/10.1016/j.btre.2015.11.001
Article
Google Scholar
Kuddus MR, Arif JM, Ramteke PW (2012) Structural adaptation and biocatalytic prospective of microbial cold-active á-amylase. Afr J Microbiol Res 6:206–213
Google Scholar
Mihaela C, Teodor N, Gabriela B, Peter S (2009) Cold adapted amylase and protease from new Streptomyces 4 Alga Antarctic strain. Inn Romanian Food Biotechnol 5:23–30
Google Scholar
Shipkowski S, Brenchley JE (2005) Characterization of an unusual cold-active beta-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol 71:4225–4232. https://doi.org/10.1128/AEM.71.8.4225-4232.2005
Article
Google Scholar
Lu L, Guo L, Wang K, Liu Y, Xiao M (2019) β-Galactosidases: a great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv 39:107465. https://doi.org/10.1016/j.biotechadv.2019.107465
Article
Google Scholar
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H (2021) Glycoside hydrolases and glycosyltransferases from hyperthermophilic archaea: Insights on their characteristics and applications in biotechnology. Biomolecules 11(11):1557
Saha D (2013) Lesser Himalayan sequences in eastern Himalaya and their deformation: implications for Paleoproterozoic tectonic activity along the northern margin of India. J Geoscience Front 4:289–304
Article
Google Scholar
Buckley M (2008) Shangri-La: a practical guide to the Himalayan dream. Bradt Travel Guides
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38
Kjeldahl JGCT (1883) A new method for the estimation of nitrogen in organic compounds. Z Anal Chem 1883:366–382
Rhodes J, Beale MA, Fisher MC (2014) Illuminating choices for library prep: a comparison of library preparation methods for whole genome sequencing of Cryptococcus neoformans using Illumina HiSeq. PLoS One 9(11):e113501. https://doi.org/10.1371/journal.pone.0113501
Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms11257
Article
Google Scholar
Bose T, Haque MM, Reddy C, Mande SS (2015) COGNIZER: a framework for functional annotation of metagenomic datasets. PLoS One 10:0142102. https://doi.org/10.1371/journal.pone.0142102
Article
Google Scholar
Simpson EH (1949) Measurement of diversity. Nature 163:688–688
Article
MATH
Google Scholar
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423
Article
MathSciNet
MATH
Google Scholar
Menhinick EF (1964) A comparison of some species-individuals diversity indices applied to samples of field insects. Ecol 45:859–861 http://www.jstor.org/stable/1934933
Article
Google Scholar
Buzas MA, Gibson TG (1969) Species diversity: benthonic foraminifera in western North Atlantic. Science 163:72–75. https://doi.org/10.1126/science.163.3862.72
Article
Google Scholar
Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168:1345–1347. https://doi.org/10.1126/science.168.3937.1345
Article
Google Scholar
Margalef R (1958) Information theory in ecology. General Systems Yearbook 3:36–71
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42D1:D490–D495. https://doi.org/10.1093/nar/gkt1178
Article
Google Scholar
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451. https://doi.org/10.1093/nar/gks479
Article
Google Scholar
Abraham J (2013) Organic carbon estimations in soils: analytical protocols and their implications Rubber. Science 26:45–54
Google Scholar
Gorde SP, Jadhav MV (2013) Assessment of water quality parameters: a review. Int J Eng Res Appl 3:2029–2035
Google Scholar
Haldar S, Nazareth SW (2018) Taxonomic diversity of bacteria from mangrove sediments of Goa: metagenomic and functional analysis. 3 Biotech 8(10):436. https://doi.org/10.1007/s13205-018-1441-6
Singare PU, Trivedi MP, Mishra RM (2011) Assessing the physico-chemical parameters of sediment ecosystem of Vasai Creek at Mumbai, India. Mar Sci 1:22–29
Article
Google Scholar
Lew S, Glińska-Lewczuk K, Ziembińska-Buczyńska A (2018) Prokaryotic community composition affected by seasonal changes in physicochemical properties of water in peat bog lakes. Water 10(4):485
Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33
Article
Google Scholar
Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
Article
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141. https://doi.org/10.1093/nar/gkh121
Article
Google Scholar
Meyer F, Overbeek R, Rodriguez A (2009) FIGfams: yet another set of protein families. Nucleic Acids Res 37:6643–6654. https://doi.org/10.1093/nar/gkp698
Article
Google Scholar
The Gene Ontology Consortium (2008) The Gene Ontology project in 2008. Nucleic Acids Res 36:D440–D444. https://doi.org/10.1093/nar/gkm883
Article
Google Scholar
Rai A, Bhattacharjee A (2021) Molecular profiling of microbial community structure and their CAZymes via metagenomics, from Tsomgo lake in the Eastern Himalayas. Arch Microbiol 203(6):3135–3146. https://doi.org/10.1007/s00203-021-02278-7
Liao B, Yan X, Zhang J, Chen M, Li Y, Huang J, Lei M, He H, Wang J (2019) Microbial community composition in alpine lake sediments from the Hengduan Mountains. Microbiologyopen J 8:e00832. https://doi.org/10.1002/mbo3.832
Article
Google Scholar
Fang L, Chen L, Liu Y, Tao W, Zhang Z, Liu H, Tang Y (2015) Planktonic and sedimentary bacterial diversity of Lake Sayram in summer. Microbiologyopen 4:814–825. https://doi.org/10.1002/mbo3.281
Article
Google Scholar
Krishna M, Gupta S, Delgado-Baquerizo M, Morriën E, Garkoti SC, Chaturvedi R, Ahmad S (2020) Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession. Sci Rep 10:1–10.
Google Scholar
Newton R J, Jones SE, Eiler A, McMahon K. D, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiology and molecular biology reviews : MMBR 75(1):14–49. https://doi.org/10.1128/MMBR.00028-10
Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman CM (2008) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 51–71. https://doi.org/10.1007/978-3-540-74335-4_4
Chapter
Google Scholar
Kolton M, Sela N, Elad Y, Cytryn E (2013) Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS One 8:e76704. https://doi.org/10.1371/journal.pone.0076704
Article
Google Scholar
Weon HY, Song MH, Son JA, Kim BY, Kwon SW, Go SJ, Stackebrandt E (2007) Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from green house soil. Int J Syst Evol Microbiol 57:1594–1598. https://doi.org/10.1099/ijs.0.64935-0
Article
Google Scholar
Cousin S, Pauker O, Stackebrandt E (2007) Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov. from a hard-water creek. Int J Syst Evol Microbiol 57:243–249. https://doi.org/10.1099/ijs.0.64556-0
Article
Google Scholar
Yi H, Oh HM, Lee JH, Kim SJ, Chun J (2005) Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641. https://doi.org/10.1099/ijs.0.63423-0
Article
Google Scholar
Zhu L, Liu Q, Liu H, Zhang J, Dong X, Zhou Y, Xin Y (2013) Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from Hailuogou Glacier, South west China. Int J Syst Evol Microbiol 63:2032–2037. https://doi.org/10.1099/ijs.0.045534-0
Article
Google Scholar
He Y, Gong Y, Su Y, Zhang Y, Zhou X (2019) Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: environmental factors and electron transfer flow studies. Chemosphere 221:793–801.
Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286. https://doi.org/10.1016/S0065-2911(04)49005-5
Article
Google Scholar
Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ Sci Technol 32:1222–1229
Article
Google Scholar
Lovley DR, Anderson RT (2000) Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. Hydogeol J 8:77–88
Article
Google Scholar
Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095. https://doi.org/10.1128/AEM.70.5.3091-3095.2004
Article
Google Scholar
Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759. https://doi.org/10.1128/aem.60.10.3752-3759.1994
Article
Google Scholar
Florentino AP, Weijma J, Stams AJ, Sánchez-Andrea I (2016) Ecophysiology and application of acidophilic sulfur-reducing microorganisms. In: Rampelotto PH (ed) Biotechnology of Extremophiles: Advances and Challenges. Grand Challenges in Biology and Biotechnology, Vol. 1. Springer International Publishing, pp 141–175. https://doi.org/10.1007/978-3-319-13521-2_5
Rabus R, Hansen TA, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 659–768. https://doi.org/10.1007/0-387-30742-7_22
Abot A, Arnal G, Auer L, Lazuka A, Labourdette D, Lamarre S, Trouilh L, Laville E, Lombard V, Potocki-Veronese G, Henrissat B (2016) CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics 17:1–12. https://doi.org/10.1186/s12864-016-2988-4
Article
Google Scholar
Janeček Š, Svensson B, MacGregor E (2014) α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71:1149–1170. https://doi.org/10.1007/s00018-013-1388-z
Article
Google Scholar
Pinto ÉSM, Dorn M, Feltes BC (2020) The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. Chemosphere 250:126202. https://doi.org/10.1016/j.chemosphere.2020.126202
A Linares-Pasten J, Andersson M, N Karlsson E (2014) Thermostable glycoside hydrolases in biorefinery technologies. Curr Biotechnol 3(1):26–44
Mewis K, Lenfant N, Lombard V (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol 82:1686–1692. https://doi.org/10.1128/AEM.03453-15
Article
Google Scholar
Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644. https://doi.org/10.1016/s0959-440x(97)80072-3
Article
Google Scholar
Makowski K, Białkowska A, Olczak J, Kur J, Turkiewicz M (2009) Antarctic, cold-adapted β-galactosidase of Pseudoalteromonas sp. 22b as an effective tool for alkyl galactopyranosides synthesis. Enzym Microb Technol 44:59–64.
Van De Voorde I, Goiris K, Syryn E, Van den Bussche C, Aerts G (2014) Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of d-tagatose production. Process Biochem 49:2134–2140. https://doi.org/10.1016/j.procbio.2014.09.010
Article
Google Scholar
Böger M, Hekelaar J, Van LSS, Dijkhuizen L, Van Bueren AL (2019) Structural and functional characterization of a family GH53 β-1, 4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. J Struct Biol 205:1–10. https://doi.org/10.1016/j.jsb.2018.12.002
Article
Google Scholar
Kumar V, Thakur V, Kumar S, Singh D (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 365:fny144. https://doi.org/10.1093/femsle/fny144
Article
Google Scholar
Thakur V, Kumar V, Kumar S (2018) Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol 64:798–808. https://doi.org/10.1139/cjm-2017-0754
Article
Google Scholar