Nawaz S, Schweitzer J, Jahn O, Werner HB (2013) Molecular evolution of myelin basic protein, an abundant structural myelin component. GLIA 61(8):1364–1377. https://doi.org/10.1002/glia.22520
Article
Google Scholar
Watanabe T (2018) The Cell. In: Watanebe T (ed) Biophysical basis of physiology and calcium signaling mechanism in cardiac and smooth muscle. Elsevier, pp 99–137. https://doi.org/10.1016/B978-0-12-814950-8.00004-4
Chapter
Google Scholar
Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B (2021) Identification of 3′ UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 19(1):e3001053. https://doi.org/10.1101/654616
Article
Google Scholar
Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149–161. https://doi.org/10.1016/j.brainres.2015.10.026
Article
Google Scholar
Kirschner DA, Karthigesan J, Bizzozero OA, Kosaras B, Inouye H (2008) Myelin structure and composition of myelinated tissue in the African lungfish. Neuron Glia Biol 4(2):59–70. https://doi.org/10.1017/S1740925X09990196
Article
Google Scholar
Kumar S, Sharma B, Bhadwal P, Sharma P, Agnihotri N (2018) Lipids as nutraceuticals: a shift in paradigm. In: Holban AM, Grumezescu AM (eds) Handbook of food bioengineering, therapeutic foods. Academic, pp 51–98. https://doi.org/10.1016/B978-0-12-811517-6.00003-9
Chapter
Google Scholar
Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cellular Mol Life Sci CMLS 63(17):1945–1961. https://doi.org/10.1007/s00018-006-6094-7
Article
Google Scholar
Brösamle C, Halpern ME (2002) Characterization of myelination in the developing zebrafish. Glia 39(1):47–57. https://doi.org/10.1002/glia.10088
Article
Google Scholar
Zhou L, Li CJ, Wang Y, Xia W, Yao B, Jin JY, Gui JF (2007) Identification and characterization of a MBP isoform specific to hypothalamus in orange-spotted grouper (Epinephelus coioides). J Chem Neuroanat 34(1-2):47–59. https://doi.org/10.1016/j.jchemneu.2007.03.011
Article
Google Scholar
Steshenko O, Andrade DM, Honigmann A, Mueller V, Schneider F, Sezgin E, Hell SW, Simons M, Eggeling C (2016) Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys J 110(11):2441–2450. https://doi.org/10.1016/j.bpj.2016.04.047
Article
Google Scholar
Harauz G, Ladizhansky V, Boggs JM (2009) Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48(34):8094–8104. https://doi.org/10.1021/bi901005f
Article
Google Scholar
Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C et al (2016) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34(2):152–167. https://doi.org/10.1016/j.devcel.2015.06.01
Article
Google Scholar
D’ Amora M., Giordani S. (2018) The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00976
Halstrom A, MacDonald E, Neil C, Arendts G, Fatovich D, Fitzgerald M (2017) Elevation of oxidative stress indicators in a pilot study of plasma following traumatic brain injury. J Clin Neurosci 35:104–108. https://doi.org/10.1016/j.jocn.2016.09.006
Article
Google Scholar
Mehta T, Fayyaz M, Giler GE, Kaur H, Raikwar SP, Kempuraj D, Selvakumar GP, Ahmed ME, Thangavel R, Zaheer S (2020) Current trends in biomarkers for traumatic brain injury. Open Access J Neurol Neurosurg 12(4):86
Google Scholar
Schartl M (2014) Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech 7(2):181–192
Google Scholar
Lust K, Tanaka EM (2019) A comparative perspective on brain regeneration in amphibians and teleost fish. Dev Neurobiol 79(5):424–436
Article
Google Scholar
Holguín-Céspedes GK, Millán-Ocampo LM, Mahecha-Méndez EJ, Céspedes-Rubio ÁE, Rondón-Barragán IS (2019) Toxicity assessment of chlorpyrifos in red-bellied pacu fingerlings (Piaractus brachypomus). Revista Internacional de Contaminación Ambiental 35(4):815–829. https://doi.org/10.20937/RICA.2019.35.04.04
Article
Google Scholar
Marín-Mendez G, Torres-Cortes A, Naranjo-Suarez L, Chacón-Novoa R, Rondón-Barragan I (2012) Concentración letal 50 a 96 horas de eugenol en cachama blanca (Piaractus brachypomus). ORINOQUIA 16(2):62–66 http://www.scielo.org.co/pdf/rori/v16n2/v16n2a07.pdf
Article
Google Scholar
Mesa-Granda M, Botero-Aguirre M (2007) La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. Revista Colombiana de Ciencias Pecuarias 20:79–86
Google Scholar
Naranjo-Gómez JS, Vargas-Rojas LF, Rondón-Barragán IS (2013) Toxicidad aguda de cloruro de mercurio (HGCL2) en Cachama blanca: Piaractus brachypomus (Cuvier, 1818). Actualidades Biológicas 35(98):85–93
Google Scholar
Brattelid T, Smith AJ (2000) Methods of positioning fish for surgery or other procedures out of water. Lab Anim 34(4):430–433. https://doi.org/10.1258/002367700780387660
Article
Google Scholar
Jenkins JA, Chair HL, Bart J, Bowker JD, Bowser PR, MacMillan JR, Nickum JG, Rose JD, Sorensen PW, Whitledge GW, Rachlin JW, Warkentine BE, Bart HL (2014) Guidelines for the use of fishes in research. American Fisheries Society, Bethesda
Book
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Article
Google Scholar
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354. https://doi.org/10.1093/nar/gkaa977
Article
Google Scholar
Necci M, Piovesan D, Dosztányi Z, Tosatto SC (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404. https://doi.org/10.1093/bioinformatics/btx015
Article
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Human Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571
Chapter
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Article
Google Scholar
Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammalian Prot Metab 3:21–132. https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
Article
Google Scholar
Vargas-Vargas RA (2017) Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica. Anestesia en México (29):86–96 http://www.scielo.org.mx/pdf/am/v29s1/2448-8771-am-29-00086.pdf
CCAC (2010) CCAC guidelines on: Euthanasia of animals used in science. Canadian Council on Animal Care (CCAC), Ottawa, p 36
Google Scholar
Zapata-Guerra NA, Rueda-Gómez DS, Lozano-Villegas KJ, Herrera-Sánchez MP, Uribe-García HF, Rondón-Barragán IS (2020) Menthol as anaesthetic for red-bellied pacu (Piaractus brachypomus) and its effect on HIF1a and GlucoR gene expression. Aquac Res 51(11):4421–4429. https://doi.org/10.1111/are.14784
Article
Google Scholar
Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. DMM Dis Models Mechan 5(2):200–209. https://doi.org/10.1242/dmm.007336
Article
Google Scholar
Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp 90(90):51753. https://doi.org/10.3791/51753
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
Google Scholar
Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G (1997) Three-dimensional structure of myelin basic protein: II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J Biol Chem 272(7):4269–4275. https://doi.org/10.1074/jbc.272.7.4269
Article
Google Scholar
Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, Luo J (2014) Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS One 9(9):e108646. https://doi.org/10.1371/journal.pone.0108646
Article
Google Scholar
Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. https://doi.org/10.1038/nrm2820
Article
Google Scholar
Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M (2009) Phosphatidylinositol 4, 5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29(15):4794–4807. https://doi.org/10.1523/JNEUROSCI.3955-08.2009
Article
Google Scholar
Min Y, Kristiansen K, Boggs JM, Husted C, Zasadzinski JA, Israelachvili J (2009) Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc Natl Acad Sci 106(9):3154–3159. https://doi.org/10.1073/pnas.0813110106
Article
Google Scholar
Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4(2):155–161. https://doi.org/10.1093/protein/4.2.155
Article
Google Scholar
O'Brien JS (1965) Stability of the myelin membrane: lipid molecules may impart stability to the myelin membrane through intermolecular cohesion. Science 147(3662):1099–1107. https://doi.org/10.1126/science.147.3662.1099
Article
Google Scholar
Poitelon Y, Kopec AM, Belin S (2020) Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells 9(4):812. https://doi.org/10.3390/cells9040812
Article
Google Scholar
Valdivia AO, Agarwal PK, Bhattacharya SK (2020) Myelin basic protein phospholipid complexation likely competes with deimination in experimental autoimmune encephalomyelitis mouse model. ACS Omega 5(25):15454–15467. https://doi.org/10.1021/acsomega.0c01590
Article
Google Scholar
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0
Article
Google Scholar
Glushakova OY, Glushakov AV, Mannix R, Miller ER, Valadka AB, Hayes RL. 2018. The use of blood-based biomarkers to improve the design of clinical trials of traumatic brain injury. In Skolnick BE, Alves WM. (Eds.), Handbook of neuroemergency clinical trials. Elsevier: Academic, pps. 139-166. https://doi.org/10.1016/B978-0-12-804064-5.00008-4
Saavedra RA, Fors L, Aebersold RH, Arden B, Horvath S, Sanders J, Hood L (1989) The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. J Mol Evol 29(2):149–156. https://doi.org/10.1007/BF02100113
Article
Google Scholar
Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Fares C (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35(7):503–542. https://doi.org/10.1016/j.micron.2004.04.005
Article
Google Scholar
Harauz G, Libich DS (2009) The classic basic protein of myelin-conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein-protein interactions. Curr Protein Pept Sci 10(3):196–215. https://doi.org/10.2174/138920309788452218
Article
Google Scholar
Bamm VV, De Avila M, Smith GS, Ahmed MA, Harauz G (2011) Structured functional domains of myelin basic protein: cross talk between actin polymerization and Ca2+-dependent calmodulin interaction. Biophys J 101(5):1248–1256. https://doi.org/10.1016/j.bpj.2011.07.035
Article
Google Scholar
Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G (2008) Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry 47(1):267–282. https://doi.org/10.1021/bi701336n
Article
Google Scholar
Hirschberg D, Rådmark O, Jörnvall H, Bergman T (2003) Thr94 in bovine myelin basic protein is a second phosphorylation site for 42-kDa mitogen-activated protein kinase (ERK2). J Protein Chem 22(2):177–181. https://doi.org/10.1023/a:1023479131488
Article
Google Scholar
Stoner GL (1990) Conservation throughout vertebrate evolution of the predicted β-strands in myelin basic protein. J Neurochem 55(4):1404–1411. https://doi.org/10.1111/j.1471-4159.1990.tb03153.x
Article
Google Scholar
Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100(5):1114–1122. https://doi.org/10.1172/JCI119622
Article
Google Scholar
Bullock TH, Moore JK, Fields RD (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett 48(2):145–148. https://doi.org/10.1016/0304-3940(84)90010-7
Article
Google Scholar
Liu HB, MacKenzie-Graham AJ, Palaszynski K, Liva S, Voskuhl RR (2001) “Classic” myelin basic proteins are expressed in lymphoid tissue macrophages. J Neuroimmunol 116(1):83–93. https://doi.org/10.1016/S0165-5728(01)00284-3
Article
Google Scholar
Kalwy S, Marty MC, Bausero P, Pessac B (1998) Myelin basic protein-related proteins in mouse brain and immune tissues. J Neurochem 70(1):435–438. https://doi.org/10.1046/j.1471-4159.1998.70010435.x
Article
Google Scholar
Marty MC, Alliot F, Rutin J, Fritz R, Trisler D, Pessac B (2002) The myelin basic protein gene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc Natl Acad Sci 99(13):8856–8861. https://doi.org/10.1073/pnas.122079599
Article
Google Scholar
Torvund-Jensen J, Steengaard J, Askebjerg LB, Kjaer-Sorensen K, Laursen LS (2018) The 3’UTRs of myelin basic protein mRNAs regulate transport, local translation and sensitivity to neuronal activity in zebrafish. Front Mol Neurosci 11:185. https://doi.org/10.3389/fnmol.2018.00185
Article
Google Scholar
Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev 2012. https://doi.org/10.1155/2012/428010
Tarulli A (2021) Disorders of the eyelids and pupils. In: Neurology. Springer, Cham, pp 107–114. https://doi.org/10.1007/978-3-030-55598-6_7
Chapter
Google Scholar
ur Rahman HU, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N (2020) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ 142649. https://doi.org/10.1016/j.scitotenv.2020.142649
Tapiero-Hernández Y, Rondon-Barragán I, Cespedes-Rubio A (2013) Neurotoxic potential of trichlorfon to multiple sublethal doses in wistar rats. Acta Biológica Colombiana 18(3):479–488
Google Scholar
Thrasher JD, Madison R, Broughton A (1993) Immunologic abnormalities in humans exposed to chlorpyrifos: preliminary observations. Arch Environ Health Int J 48(2):89–93. https://doi.org/10.1080/00039896.1993.9938400
Article
Google Scholar
García-Gonzalez D, Murcia-Belmonte V, Clemente D, De Castro F (2013) Olfactory system and demyelination. Anat Rec 296(9):1424–1434. https://doi.org/10.1002/ar.22736
Article
Google Scholar
Haines DE, Mihailoff GA (2018) Chapter 16 - the telencephalon. In: Haines DE, Mihailoff GA (eds) Fundamental neuroscience for basic and clinical applications (fifth edition). Elsevier, pp 225–240.e221. https://doi.org/10.1016/b978-0-323-39632-5.00016-5
Chapter
Google Scholar
El-Hossary GG, Mansour SM, Mohamed AS (2009) Neurotoxic effects of chlorpyrifos and the possible protective role of antioxidant supplements: an experimental study. J Appl Sci Res 5(9):1218–1222
Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149. https://doi.org/10.1016/j.brainres.2009.09.084
Article
Google Scholar
Millet V, Marder M, Pasquini LA (2012) Adult CNP: EGFP transgenic mouse shows pronounced hypomyelination and an increased vulnerability to cuprizone-induced demyelination. Exp Neurol 233(1):490–504. https://doi.org/10.1016/j.expneurol.2011.11.028
Article
Google Scholar
Hanafy KA, Sloane JA (2011) Regulation of remyelination in multiple sclerosis. FEBS Lett 585(23):3821–3828. https://doi.org/10.1016/j.febslet.2011.03.048
Article
Google Scholar
Betancourt AM, Burgess SC, Carr RL (2006) Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain. Toxicol Sci 92(2):500–506. https://doi.org/10.1093/toxsci/kfl004
Article
Google Scholar
Garcia SJ, Seidler FJ, Slotkin TA (2003) Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect 111(3):297–303. https://doi.org/10.1289/ehp.5791
Article
Google Scholar
Slotkin TA, Seidler FJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72(4-6):232–274. https://doi.org/10.1016/j.brainresbull.2007.01.005
Article
Google Scholar
Priborsky J, Velisek J (2018) A review of three commonly used fish anesthetics. Rev Fisheries Sci Aquacult 26(4):417–442. https://doi.org/10.1080/23308249.2018.1442812
Article
Google Scholar
Martins T, Valentim A, Pereira N, Antunes LM (2019) Anaesthetics and analgesics used in adult fish for research: a review. Lab Anim 53(4):325–341. https://doi.org/10.1177/0023677218815199
Article
Google Scholar
Neiffer DL, Stamper MA (2009) Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J 50(4):343–360. https://doi.org/10.1093/ilar.50.4.343
Article
Google Scholar
Mateu L, Moran O, Padrón R, Borgo M, Vonasek E, Marquez G, Luzzati V (1997) The action of local anesthetics on myelin structure and nerve conduction in toad sciatic nerve. Biophys J 72(6):2581–2587. https://doi.org/10.1016/S0006-3495(97)78901-X
Article
Google Scholar
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26(7):1118–1130. https://doi.org/10.1177/0963689717714102
Article
Google Scholar
Cho SJ, Park E, Telliyan T, Baker A, Reid AY (2020) Zebrafish model of posttraumatic epilepsy. Epilepsia 61(8):1774–1785
Article
Google Scholar
Cacialli P, D'angelo L, Kah O, Coumailleau P, Gueguen MM, Pellegrini E, Lucini C (2018) Neuronal expression of brain derived neurotrophic factor in the injured telencephalon of adult zebrafish. J Comp Neurol 526(4):569–582
Article
Google Scholar
Maheras AL, Dix B, Carmo OMS, Young AE, Gill VN, Sun JL, Booker AR, Thomason HA, Ibrahim AE, Stanislaw L et al (2018) Genetic pathways of neuroregeneration in a novel mild traumatic brain injury model in adult zebrafish. ENeuro 5(1). https://doi.org/10.1523/ENEURO.0208-17.2017
Taib T, Leconte C, Van Steenwinckel J, Cho AH, Palmier B, Torsello E, Kuen RL, Onyeomah S, Ecomard K, Benedetto C et al (2017) Neuroinflammation, myelin and behavior: temporal patterns following mild traumatic brain injury in mice. PLoS One 12(9):e0184811. https://doi.org/10.1371/journal.pone.0184811
Article
Google Scholar
Mierzwa AJ, Marion CM, Sullivan GM, McDaniel DP, Armstrong RC (2015) Components of myelin damage and repair in the progression of white matter pathology after mild traumatic brain injury. J Neuropathol Exp Neurol 74(3):218–232. https://doi.org/10.1097/nen.0000000000000165
Article
Google Scholar
Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg Pediatr 103(1):61–68. https://doi.org/10.3171/ped.2005.103.1.0061
Article
Google Scholar
Kim HJ, Tsao JW, Stanfill AG (2018) The current state of biomarkers of mild traumatic brain injury. JCI insight 3(1). https://doi.org/10.1172/jci.insight.97105