Xiong ZQ, Zhang ZP, Li JH, Wei SJ, Tu GQ (2012) Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Appl. Environ. Microbiol. 78(2):589–592. https://doi.org/10.1128/AEM.06561-11
Article
Google Scholar
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70(3):461–477. https://doi.org/10.1021/np068054v
Article
Google Scholar
Berdy J (2005) Bioactive microbial metabolites. J. Antibiot. 58(1):1–26. https://doi.org/10.1038/ja.2005.1
Article
Google Scholar
Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 21(6):780–786. https://doi.org/10.1016/j.copbio.2010.09.013
Article
Google Scholar
Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 23(11):539–543. https://doi.org/10.1016/j.tibtech.2005.08.006
Article
Google Scholar
Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J. Antibiot. 63(8):415–422. https://doi.org/10.1038/ja.2010.56
Article
Google Scholar
Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J. Ind. Microbiol. Biotechnol. 33(7):539–544. https://doi.org/10.1007/s10295-006-0115-2
Article
Google Scholar
Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105(12):4587–4594. https://doi.org/10.1073/pnas.0709851105
Article
Google Scholar
Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu. Rev. Microbiol. 48(1):559–584. https://doi.org/10.1146/annurev.mi.48.100194.003015
Article
Google Scholar
Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99(24):15681–15686. https://doi.org/10.1073/pnas.252630999
Article
Google Scholar
Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol. Lett. 309(1):1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x
Article
Google Scholar
Yamamura H, Hayakawa M, Iimura Y (2003) Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J. Appl. Microbiol. 95(4):677–685. https://doi.org/10.1046/j.1365-2672.2003.02025.x
Article
Google Scholar
Bredholdt H, Galatenko OA, Engelhardt K, Fjaervik E, Terekhova LP, Zotchev SB (2007) Rare actinomycete bacteria from the shallow water sediments of the Trondheim Fjord, Norway: isolation, diversity and biological activity. Environ. Microbiol. 9(11):2756–2764. https://doi.org/10.1111/j.1462-2920.2007.01387.x
Article
Google Scholar
Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ. Microbiol. 7(7):1039–1048. https://doi.org/10.1111/j.1462-2920.2005.00785.x
Article
Google Scholar
Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. 5(3):479–490. https://doi.org/10.1038/nprot.2009.233
Article
Google Scholar
Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar. Drugs 8(3):399–412. https://doi.org/10.3390/md8030399
Article
Google Scholar
D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17(3):254–264. https://doi.org/10.1016/j.chembiol.2010.02.010
Article
Google Scholar
Kopke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71(12):7819–7830. https://doi.org/10.1128/AEM.71.12.7819-7830.2005
Article
Google Scholar
Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68(8):3978–3987. https://doi.org/10.1128/AEM.68.8.3978-3987.2002
Article
Google Scholar
Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1):143–169. https://doi.org/10.1128/mr.59.1.143-169.1995
Article
Google Scholar
Asolkar RN, Kirkland TN, Jensen PR, Fenical W (2010) Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J. Antibiot. 63(1):37–39. https://doi.org/10.1038/ja.2009.114
Article
Google Scholar
Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. USA 104(25):10376–10381. https://doi.org/10.1073/pnas.0700962104
Article
Google Scholar
Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2(12):666–673. https://doi.org/10.1038/nchembio841
Article
Google Scholar
Tsueng G, Lam KS (2010) A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora. Appl. Microbiol. Biotechnol. 86(5):1525–1534. https://doi.org/10.1007/s00253-009-2424-7
Article
Google Scholar
Tsueng G, Lam KS (2008) Growth of Salinispora tropica strains CNB440, CNB476, and NPS21184 in nonsaline, low-sodium media. Appl. Microbiol. Biotechnol. 80(5):873–880. https://doi.org/10.1007/s00253-008-1614-z
Article
Google Scholar
Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol. 30(9):475–484. https://doi.org/10.1016/j.tibtech.2012.05.007
Article
Google Scholar
Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101(46):16222–16227. https://doi.org/10.1073/pnas.0405976101
Article
Google Scholar
Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633. https://doi.org/10.1038/nature00917
Article
Google Scholar
Song J, Oh HM, Cho JC (2009) Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea West Pacific Ocean. FEMS Microbiol. Lett. 295(2):141–147. https://doi.org/10.1111/j.1574-6968.2009.01623.x
Article
Google Scholar
Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68(8):3878–3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
Article
Google Scholar
Bae JW, Rhee SK, Park JR, Kim BC, Park YH (2005) Isolation of uncultivated anaerobic thermophiles from compost by supplementing cell extract of Geobacillus toebii in enrichment culture medium. Extremophiles 9(6):477–485. https://doi.org/10.1007/s00792-005-0467-y
Article
Google Scholar
Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein T, Epstein SS (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl. Environ. Microbiol. 74(15):4889–4897. https://doi.org/10.1128/AEM.00393-08
Article
Google Scholar
Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129. https://doi.org/10.1126/science.1070633
Article
Google Scholar
Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2009) An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol. Ecol. 68(3):363–371. https://doi.org/10.1111/j.1574-6941.2009.00682.x
Article
Google Scholar
Ferrari BC, Gillings MR (2009) Cultivation of fastidious bacteria by viability staining and micromanipulation in a soil substrate membrane system. Appl. Environ. Microbiol. 75(10):3352–3354. https://doi.org/10.1128/AEM.02407-08
Article
Google Scholar
Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat. Protoc. 3(8):1261–1269. https://doi.org/10.1038/nprot.2008.102
Article
Google Scholar
Hahn MW, Stadler P, Wu QL, Pockl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J. Microbiol. Methods 57(3):379–390. https://doi.org/10.1016/j.mimet.2004.02.004
Article
Google Scholar
Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J. 3(8):889–902. https://doi.org/10.1038/ismej.2009.46
Article
Google Scholar
Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J. Am. Chem. Soc. 128(5):1622–1632. https://doi.org/10.1021/ja0558948
Article
Google Scholar
Chen F, Lin L, Wang L, Tan Y, Zhou H, Wang Y, He W (2011) Distribution of dTDP-glucose-4,6-dehydratase gene and diversity of potential glycosylated natural products in marine sediment-derived bacteria. Appl. Microbiol. Biotechnol. 90(4):1347–1359. https://doi.org/10.1007/s00253-011-3112-y
Article
Google Scholar
McGlinchey RP, Nett M, Eustaquio AS, Asolkar RN, Fenical W, Moore BS (2008) Engineered biosynthesis of antiprotealide and other unnatural salinosporamide proteasome inhibitors. J. Am. Chem. Soc. 130(25):7822–7823. https://doi.org/10.1021/ja8029398
Article
Google Scholar
Donia MS, Hathaway BJ, Sudek S, Haygood MG, Rosovitz MJ, Ravel J, Schmidt EW (2006) Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2(12):729–735. https://doi.org/10.1038/nchembio829
Article
Google Scholar
Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49(1):10–24. https://doi.org/10.1007/s00248-004-0249-6
Article
Google Scholar
Liu W, Ahlert J, Gao Q, Wendt-Pienkowski E, Shen B, Thorson JS (2003) Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proc. Natl. Acad. Sci. USA 100(21):11959–11963. https://doi.org/10.1073/pnas.2034291100
Article
Google Scholar
Wang H, Liu N, Xi L, Rong X, Ruan J, Huang Y (2011) Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes. Appl. Environ. Microbiol. 77(10):3433–3442. https://doi.org/10.1128/AEM.02915-10
Article
Google Scholar
Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K (2010) Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria. FEMS Microbiol. Lett. 304(1):89–96. https://doi.org/10.1111/j.1574-6968.2009.01886.x
Article
Google Scholar
Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, Wohlert SE, Holzenkampfer M, Nicholson GJ, Bechthold A, Sussmuth RD et al (2007) A genomic screening approach to the structure-guided identification of drug candidates from natural sources. ChemBioChem 8(7):757–766. https://doi.org/10.1002/cbic.200600375
Article
Google Scholar
Gontang EA, Gaudencio SP, Fenical W, Jensen PR (2010) Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Appl. Environ. Microbiol. 76(8):2487–2499. https://doi.org/10.1128/AEM.02852-09
Article
Google Scholar
Zhang W, Li Z, Miao X, Zhang F (2009) The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges. Mar. Biotechnol. 11(3):346–355. https://doi.org/10.1007/s10126-008-9148-z
Article
Google Scholar
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N (2009) Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol. J. 4(4):480–494. https://doi.org/10.1002/biot.200800201
Article
Google Scholar
Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2(5):1297–1305. https://doi.org/10.1038/nprot.2007.195
Article
Google Scholar
Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 13(5):603–609. https://doi.org/10.1016/j.mib.2010.08.012
Article
Google Scholar
Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat. Rev. Microbiol. 3(6):510–516. https://doi.org/10.1038/nrmicro1161
Article
Google Scholar
Daniel R (2005) The metagenomics of soil. Nat. Rev. Microbiol. 3(6):470–478. https://doi.org/10.1038/nrmicro1160
Article
Google Scholar
Feng Z, Kim JH, Brady SF (2010) Fluostatins produced by the heterologous expression of a TAR reassembled environmental DNA derived type II PKS gene cluster. J. Am. Chem. Soc. 132(34):11902–11903. https://doi.org/10.1021/ja104550p
Article
Google Scholar
Craig JW, Chang FY, Brady SF (2009) Natural products from environmental DNA hosted in Ralstonia metallidurans. ACS Chem. Biol. 4(1):23–28. https://doi.org/10.1021/cb8002754
Article
Google Scholar
Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol. 8(3):276–281. https://doi.org/10.1016/j.mib.2005.04.008
Article
Google Scholar
Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotechnol. 21(2):187–190. https://doi.org/10.1038/nbt784
Article
Google Scholar
Luzhetskyy A, Pelzer S, Bechthold A (2007) The future of natural products as a source of new antibiotics. Curr. Opin. Investig. Drugs 8(8):608–613
Google Scholar
Bentley S, Chater K, Cerdeno-Tarraga AM, Challis G, Thomson N, James K, Harris D, Quail M, Kieser H, Harper D (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885):141–147. https://doi.org/10.1038/417141a
Article
Google Scholar
Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98(21):12215–12220. https://doi.org/10.1073/pnas.211433198
Article
Google Scholar
Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21(5):526–531. https://doi.org/10.1038/nbt820
Article
Google Scholar
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 42(3):355–357. https://doi.org/10.1002/anie.200390115
Article
Google Scholar
Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org. Lett. 7(13):2731–2734. https://doi.org/10.1021/ol050901i
Article
Google Scholar
Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol. 15(1):22–31. https://doi.org/10.1016/j.cbpa.2010.10.020
Article
Google Scholar
Xiong ZQ, Wang Y (2012) Draft genome sequence of the marine Streptomyces sp. strain AA1529, isolated from the Yellow Sea. J. Bacteriol 194:5474–5475
Article
Google Scholar
Xiong ZQ, Wang Y (2012) Draft genome sequence of marine-derived Streptomyces sp. strain AA0539, isolated from the Yellow Sea, China. J. Bacteriol 194:6622–6623
Article
Google Scholar
Li A, Piel J (2002) A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem. Biol. 9(9):1017–1026. https://doi.org/10.1016/S1074-5521(02)00223-5
Article
Google Scholar
Eustaquio AS, Moore BS (2008) Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew. Chem. Int. Ed. 47(21):3936–3938. https://doi.org/10.1002/anie.200800177
Article
Google Scholar
Piel J (2006) Combinatorial biosynthesis in symbiotic bacteria. Nat. Chem. Biol. 2(12):661–662. https://doi.org/10.1038/nchembio1206-661
Article
Google Scholar
Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–533. https://doi.org/10.1126/science.1205822
Article
Google Scholar
Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. https://doi.org/10.1038/nature08187
Article
Google Scholar
Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102(36):12678–12683. https://doi.org/10.1073/pnas.0504604102
Article
Google Scholar
Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24(8):1027–1032. https://doi.org/10.1038/nbt1226
Article
Google Scholar
Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27(8):753–759. https://doi.org/10.1038/nbt.1557
Article
Google Scholar
Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333(6041):470–474. https://doi.org/10.1126/science.1206938
Article
Google Scholar
Zhang H, Boghigian BA, Pfeifer BA (2010) Investigating the role of native propionyl-CoA and methylmalonyl-CoA metabolism on heterologous polyketide production in Escherichia coli. Biotechnol. Bioeng. 105(3):567–573. https://doi.org/10.1002/bit.22560
Article
Google Scholar
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21(7):796–802. https://doi.org/10.1038/nbt833
Article
Google Scholar
Ichinose K, Ozawa M, Itou K, Kunieda K, Ebizuka Y (2003) Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology 149(7):1633–1645. https://doi.org/10.1099/mic.0.26310-0
Article
Google Scholar
Wang J, Xiong Z, Meng H, Wang Y, Wang Y (2012) Synthetic biology triggers new era of antibiotics development. Subcell. Biochem. 64:95–114. https://doi.org/10.1007/978-94-007-5055-5_5
Article
Google Scholar
Sowell SM, Norbeck AD, Lipton MS, Nicora CD, Callister SJ, Smith RD, Barofsky DF, Giovannoni SJ (2008) Proteomic analysis of stationary phase in thmarine bacterium “Candidatus Pelagibacter ubique”. Appl. Environ. Microbiol. 74(13):4091–4100. https://doi.org/10.1128/AEM.00599-08
Article
Google Scholar
Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatalysis. Agric. Biotechnol. 11:131–152
Xiong ZQ, Wang JF, Hao YY, Wang Y (2013) Recent Advances in the Discovery and Development of Marine Microbial Natural Products. Mar. Drugs. 11:700–717