Hussein S, Mohamed D, Hafez R (2019) Risk factors of hematological malignancies in Upper Egypt: a case–control study. Egypt J Internal Med 31(2):171–177. https://doi.org/10.4103/ejim.ejim_81_18
Article
Google Scholar
Mosaad ZE, Mohamed ZA, Abdelazeem MA, Hafez R, Hussein S, Elaiw MA (2019) Impact of CD39 expression on CD4+ T lymphocytes and 6q deletion on outcome of patients with chronic lymphocytic leukemia. Hematol Oncol Stem Cell Ther 12(1):26–31. https://doi.org/10.1016/j.hemonc.2018.09.002 Epub 2018 Oct 11. PMID: 30336122
Article
Google Scholar
Ayaz A, Tepeli E, Sari I, Cetin O, Eser M, Dogu H, Bagci G (2014) Contribution of MLPA to routine testing to detect the prognostic chromosomal abnormalities in chronic lymphocytic leukemia. Gene Ther Mol Biol 16:1–9
Google Scholar
Rahimi H, Sadeghian MH, Keramati MR, Jafarian AH, Shakeri S, Shams SF et al (2017) Cytogenetic abnormalities with interphase FISH method and clinical manifestation in chronic lymphocytic leukemia patients in North-East of Iran. Int J Hematol Oncol Stem Cell Res 11(3):217–224
Google Scholar
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O (2015) Evolution of genetic techniques: past, present, and beyond. Biomed Res Int 2015:461524
Article
Google Scholar
Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57. https://doi.org/10.1093/nar/gnf056
Article
Google Scholar
Stuppia L, Antonucci I, Palka G, Gatta V (2012) Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 13(3):3245–3276. https://doi.org/10.3390/ijms13033245
Article
Google Scholar
Fabris S, Scarciolla O, Morabito F, Cifarelli RA, Dininno C, Cutrona G, Matis S, Recchia AG, Gentile M, Ciceri G, Ferrarini M, Ciancio A, Mannarella C, Neri A, Fragasso A (2011) Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. Genes Chromosomes Cancer 50(9):726–734. https://doi.org/10.1002/gcc.20894
Article
Google Scholar
Al Zaabi EA, Fernandez LA, Sadek IA, Riddell DC, Greer WL (2010) Multiplex ligation-dependent probe amplification versus multiprobe fluorescence in situ hybridization to detect genomic aberrations in chronic lymphocytic leukemia: a tertiary center experience. J MolDiagn 12(2):197–203
Google Scholar
Muller-Hermelink HK, Montserrat E, Catovsky D, Campo E, Harris NL, Stein H (2008) Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: World Health Organization. Classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon
Google Scholar
Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H. Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring HarbSymp Quant Biol. 1986;51Pt 1:151-157. doi:https://doi.org/10.1101/sqb.1986.051.01.018.
Hömig-Hölzel C, Savola S (2012) Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol 21(4):189–206
Article
Google Scholar
Alhourani E, Rincic M, Othman MA, Pohle B, Schlie C, Glaser A, Liehr T. Comprehensive chronic lymphocytic leukemia diagnostics by combined multiplex ligation dependent probe amplification (MLPA) and interphase fluorescence in situ hybridization (iFISH). Mol Cytogenet. 2014;19;7(1):79.
Abdool A, Donahue AC, Wohlgemuth JG, Yeh CH (2010) Detection, analysis and clinical validation of chromosomal aberrations by multiplex ligation-dependent probe amplification in chronic leukemia. PLoS One 5(10):e15407. https://doi.org/10.1371/journal.pone.0015407
Article
Google Scholar
Coll-Mulet L, Santidrián AF, Cosialls AM, Iglesias-Serret D, de Frias M, Grau J, Menoyo A, González-Barca E, Pons G, Domingo A, Gil J (2008) Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol 142(5):793–801. https://doi.org/10.1111/j.1365-2141.2008.07268.x
Article
Google Scholar
Véronèse L, Tournilhac O, Combes P, Prie N, Pierre-Eymard E, Guièze R, Veyrat-Masson R, Bay JO, Vago P, Tchirkov A (2013) Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. Cancer Genet 206(1-2):19–25. https://doi.org/10.1016/j.cancergen.2012.12.002
Article
Google Scholar
Puiggros A, Venturas M, Salido M, Blanco G, Fernandez-Rodriguez C, Collado R, Valiente A, Ruiz-Xivillé N, Carrió A, Ortuño FJ, Luño E, Calasanz MJ, Ardanaz MT, Piñán MÁ, Talavera E, González MT, Ortega M, Marugán I, Ferrer A, Gimeno E, Bellosillo B, Delgado J, Hernández JÁ, Hernández-Rivas JM, Espinet B; GrupoCooperativoEspañol de CitogenéticaHematológica (GCECGH); GrupoEspañol de LeucemiaLinfáticaCrónica (GELLC). Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: different genetic mechanisms but equivalent poorer clinical outcome. Genes Chromosomes Cancer. 2014;53(9):788-97. doi: https://doi.org/10.1002/gcc.22188. Epub 2014 Jun 10. PMID: 24915757.
Knittel G, Liedgens P, Reinhardt HC. Targeting ATM-deficient CLL through interference with DNA repair pathways. Front Genet. 2015;6:207. doi: https://doi.org/10.3389/fgene.2015.00207. PMID: 26113859; PMCID: PMC4461826.
Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, Stewart G, Brown J, Lau A, Pratt G, Parry H, Taylor M, Moss P, Hillmen P, Stankovic T (2016) ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 127(5):582–595. https://doi.org/10.1182/blood-2015-05-644872 Epub 2015 Nov 12 PMID: 26563132
Article
Google Scholar
Chauffaille MLLF, Zalcberg I, Barreto WG, Bendit I. Detection of somatic TP53 mutations and 17p deletions in patients with chronic lymphocytic leukemia: a review of the current methods. Hematol Transfus Cell Ther. 2020;42(3):261-268. doi: https://doi.org/10.1016/j.htct.2020.05.005. Epub 2020 Jun 25. PMID: 32660851; PMCID: PMC7417461.
Gunn SR, Hibbard MK, Ismail SH, Lowery-Nordberg M, Mellink CH, Bahler DW et al (2009) Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia. Leukemia 23(5):1011–1017. https://doi.org/10.1038/leu.2008.393
Article
Google Scholar
Guarini A, Marinelli M, Tavolaro S, Bellacchio E, Magliozzi M, Chiaretti S, de Propris MS, Peragine N, Santangelo S, Paoloni F, Nanni M, del Giudice I, Mauro FR, Torrente I, Foa R (2012) ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 97(1):47–55. https://doi.org/10.3324/haematol.2011.049270
Article
Google Scholar
Buccheri V, Barreto WG, Fogliatto LM, Capra M, Marchiani M, Rocha V (2018) Prognostic and therapeutic stratification in CLL: focus on 17p deletion and p53 mutation. Ann Hematol 97(12):2269–2278. https://doi.org/10.1007/s00277-018-3503-6 Epub 2018 Oct 12 PMID: 30315344
Article
Google Scholar
Bagacean C, Tempescul A, Ternant D, Banet A, Douet-Guilbert N, Bordron A, Bendaoud B, Saad H, Zdrenghea M, Berthou C, Paintaud G, Renaudineau Y. 17p deletion strongly influences rituximab elimination in chronic lymphocytic leukemia. J Immunother Cancer. 2019;7(1):22. doi: https://doi.org/10.1186/s40425-019-0509-0. PMID: 30696487; PMCID: PMC6352369.
Dőhner H, Stilgenbauer S, Benner A, Leupolt E, Krőber A, Bullinger L et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916. https://doi.org/10.1056/NEJM200012283432602
Article
Google Scholar
Zou ZJ, Zhang R, Fan L, Wang L, Fang C, Zhang LN, Yang S, Li YY, Li JY, Xu W (2013) Low expression level of phosphatase and tensin homolog deleted on chromosome ten predicts poor prognosis in chronic lymphocytic leukemia. Leuk Lymphoma 54(6):1159–1164. https://doi.org/10.3109/10428194.2012.733880 Epub 2012 Oct 16 PMID: 23013295
Article
Google Scholar
Bernardi R, Ghia P. Reactivating nuclear PTEN to treat CLL. Oncotarget. 2017;8(22):35486-35487. doi: https://doi.org/10.18632/oncotarget.17543. PMID: 28473667; PMCID: PMC5482590.
Cosson A, Chapiro E, Belhouachi N, Cung HA, Keren B, Damm F, Algrin C, Lefebvre C, Fert-Ferrer S, Luquet I, Gachard N, Mugneret F, Terre C, Collonge-Rame MA, Michaux L, Rafdord-Weiss I, Talmant P, Veronese L, Nadal N, Struski S, Barin C, Helias C, Lafage M, Lippert E, Auger N, Eclache V, Roos-Weil D, Leblond V, Settegrana C, Maloum K, Davi F, Merle-Beral H, Lesty C, Nguyen-Khac F; Groupe Francophone de CytogénétiqueHématologique. 14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma. Genes Chromosomes Cancer. 2014;53(8):657-66. doi: https://doi.org/10.1002/gcc.22176. Epub 2014 Apr 12. PMID: 24729385.
Sellmann L, Gesk S, Walter C, Ritgen M, Harder L, Martín-Subero JI, Schroers R, Siemer D, Nückel H, Dyer MJS, Dührsen U, Siebert R, Dürig J, Küppers R (2007) Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol 138(2):217–220. https://doi.org/10.1111/j.1365-2141.2007.06636.x
Article
Google Scholar
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497-506. doi: https://doi.org/10.1056/NEJMoa1109016. Epub 2011 Dec 12. PMID: 22150006; PMCID: PMC3685413.
Sutton LA, Ljungström V, Mansouri L, Young E, Cortese D, Navrkalova V, Malcikova J, Muggen AF, Trbusek M, Panagiotidis P, Davi F, Belessi C, Langerak AW, Ghia P, Pospisilova S, Stamatopoulos K, Rosenquist R. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica. 2015;100(3):370-6. doi: https://doi.org/10.3324/haematol.2014.109777. Epub 2014 Dec 5. PMID: 25480502; PMCID: PMC4349276.
Vollbrecht C, Mairinger FD, Koitzsch U, Peifer M, Koenig K, Heukamp LC, Crispatzu G, Wilden L, Kreuzer KA, Hallek M, Odenthal M, Herling CD, Buettner R. Comprehensive analysis of disease-related genes in chronic lymphocytic leukemia by multiplex PCR-based next generation sequencing. PLoS One. 2015;10(6):e0129544. doi: https://doi.org/10.1371/journal.pone.0129544. PMID: 26053404; PMCID: PMC4459702.
Srinivasan VK, Naseem S, Varma N, Lad DP, Malhotra P. Genomic alterations in chronic lymphocytic leukemia and their correlation with clinico-hematological parameters and disease progression. Blood Res. 2020;55(3):131-138. doi: https://doi.org/10.5045/br.2020.2020080. PMID: 32747613; PMCID: PMC7536571.