Fang R, Zhu Y, Hu L, Khadka VS, Ai J, Zou H (2019) Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer. Front Physiol 9:1879. https://doi.org/10.3389/fphys.2018.01879
Article
Google Scholar
Katz B, Tropé CG, Reich R, Davidson B (2015) MicroRNAs in ovarian cancer. Hum Pathol 46(9):1245–1256. https://doi.org/10.1016/j.humpath.2015.06.013
Article
Google Scholar
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Article
Google Scholar
Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036
Google Scholar
Baig B, Halim SA, Farrukh A, Greish Y, Amin A (2019) Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 116:108852. https://doi.org/10.1016/j.biopha.2019.108852
Article
Google Scholar
Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770. https://doi.org/10.1007/s00018-019-03351-7
Article
Google Scholar
Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN et al (2015) Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 36(Suppl. 1):S2–S18. https://doi.org/10.1093/carcin/bgv028
Article
Google Scholar
Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R (2015) Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 16(1):1544–1561. https://doi.org/10.3390/ijms16011544
Article
Google Scholar
Graham TA, Sottoriva A (2017) Measuring cancer evolution from the genome. J Pathol 241(2):183–191. https://doi.org/10.1002/path.4821
Article
Google Scholar
Jin YJ, Lee JH, Kim YM, Oh GT, Lee H (2012) Macrophage inhibitory cytokine-1 stimulates proliferation of human umbilical vein endothelial cells by up-regulating cyclins D1 and E through the PI3K/Akt-, ERK-, and JNK-dependent AP-1 and E2F activation signaling pathways. Cell Signal 24(8):1485–1495. https://doi.org/10.1016/j.cellsig.2012.03.014
Article
Google Scholar
Wang G, Gormley M, Qiao J, Zhao Q, Wang M, Di Sante G et al (2018) Share cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 8(8):2251–2263. https://doi.org/10.7150/thno.23877
Article
Google Scholar
Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis 20(2):185–204. https://doi.org/10.1007/s10456-017-9552-y
Article
Google Scholar
Al-Dabbagh B, Elhaty IA, Murali C, Al Madhoon A, Amin A (2018) Salvadora persica (Miswak): antioxidant and promising antiangiogenic insights. Am J Plant Sci 9(6):1228–1244. https://doi.org/10.4236/ajps.2018.96091
Article
Google Scholar
Petrovic N (2016) Targeting angiogenesis in cancer treatments: where do we stand? J Pharm Pharm Sci 19(2):226–238. https://doi.org/10.18433/J30033
Article
Google Scholar
Yehya AHS, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid AMSA, Oon C (2018) Angiogenesis: managing the culprits behind tumorigenesis and metastasis. Medicina (Kaunas) 54(1):8. https://doi.org/10.3390/medicina54010008
Article
Google Scholar
Di Leva G, Briskin D, Croce CM (2012) MicroRNA in cancer: new hopes for antineoplastic chemotherapy. Ups J Med Sci 117(2):202–216. https://doi.org/10.3109/03009734.2012.660551
Article
Google Scholar
Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD, Liu ZL, Zhou J, Ding Y, Li SQ, Wang ZX, Cao XF, de W (2012) MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27 (kip1). Mol Cancer Ther 11(4):842–852. https://doi.org/10.1158/1535-7163.MCT-11-1015
Article
Google Scholar
Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181. https://doi.org/10.1016/j.cell.2006.02.037
Article
Google Scholar
Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70(8):3119–3127. https://doi.org/10.1158/0008-5472.CAN-09-4250
Article
Google Scholar
Wei F, Cao C, Xu X, Wang J (2015) Diverse functions of miR-373 in cancer. J Transl Med 13(1):162. https://doi.org/10.1186/s12967-015-0523-z
Article
Google Scholar
Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Puré E, Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210. https://doi.org/10.1038/ncb1681
Article
Google Scholar
Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152. https://doi.org/10.1038/nature06487
Article
Google Scholar
Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO (2006) Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosom Cancer 45(6):527–535. https://doi.org/10.1002/gcc.20318
Article
Google Scholar
Velasco-Velázquez MA, Li Z, Casimiro M, Loro E, Homsi N, Pestell RG (2011) Examining the role of cyclin D1 in breast cancer. Future Oncol 7(6):753–765. https://doi.org/10.2217/fon.11.56
Article
Google Scholar
O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7):417–430. https://doi.org/10.1038/nrclinonc.2016.26
Article
Google Scholar
Tchakarska G, Sola B (2020) The double dealing of cyclin D1. Cell Cycle 19(2):163–178. https://doi.org/10.1080/15384101.2019.1706903
Article
Google Scholar
He T, Qi F, Jia L, Wang S, Song N, Guo L, Fu Y, Luo Y (2014) MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol 232(5):499–508. https://doi.org/10.1002/path.4324
Article
Google Scholar
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V, Ayala de la Peña F (2018) Angiogenic role of miR-20a in breast cancer. PLoS One 3(4):e0194638. https://doi.org/10.1371/journal.pone.0194638
Article
Google Scholar
Perrot-Applanat M, Di Benedetto M (2012) Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adhes Migr 6(6):547–553. https://doi.org/10.4161/cam.23332
Article
Google Scholar
Robbins P, Pinder S, de Klerk N, Dawkins H, Harvey J, Sterrett G (1995) Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol 26(8):873–879. https://doi.org/10.1016/0046-8177(95)90010-1
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
Google Scholar
Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577. https://doi.org/10.1093/clinchem/39.4.561
Article
Google Scholar
Tutar Y (2014) miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol 15(5):429
Article
Google Scholar
Dahiya N, Morin PJ (2010) MicroRNAs in ovarian carcinomas. Endocr Relat Cancer 17(1):F77–F89. https://doi.org/10.1677/ERC-09-0203
Article
Google Scholar
Zhang X, Li X, Tan Z, Liu X, Yang C, Ding X et al (2013) MicroRNA-373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis. Oncol Lett 6(5):1427–1434. https://doi.org/10.3892/ol.2013.1534
Article
Google Scholar
Liu W, Li M, Chen X, Zhang D, Wei L, Zhang Z, Wang S, Meng L, Zhu S, Li B (2015) MicroRNA-373 promotes migration and invasion in human esophageal squamous cell carcinoma by inhibiting TIMP3 expression. Am J Cancer Res 6(1):1–14
Google Scholar
Tu HF, Chang KW, Cheng HW, Liu CJ (2015) Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas. Laryngoscope 125(11):E365–E370. https://doi.org/10.1002/lary.25464
Article
Google Scholar
Li Y, Zhang D, Wang J (2017) MicroRNA 373 promotes tumorigenesis of renal cell carcinoma in vitro and in vivo. Mol Med Rep 16(5):7048–7055. https://doi.org/10.3892/mmr.2017.7443
Article
Google Scholar
Bai X, Yang M, Xu Y (2018) MicroRNA-373 promotes cell migration via targeting salt-inducible kinase 1 expression in melanoma. Exp Ther Med 16(6):4759–4764. https://doi.org/10.3892/etm.2018.6784
Article
Google Scholar
Saeidi N et al (2018) Evaluation of circulating miRNA146a, miRNA155 and miRNA373 as potential biomarkers in ovarian cancer detection. J Mol Genet Med 12:3
Google Scholar
Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H (2013) Deregulated serum concentrations of circulating cell-free microRNAs miR 17, miR-34a, miR-155, and miR 373 in human breast cancer development and progression. Clin Chem 59(10):1489–1496. https://doi.org/10.1373/clinchem.2013.205161
Article
Google Scholar
Chen W, Cai F, Zhang B, Barekati Z, Zhong XY (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol 34(1):455–462. https://doi.org/10.1007/s13277-012-0570-5
Article
Google Scholar
Hafez MM, Hassan ZK, Zekri AR, Gaber AA, Al Rejaie SS, Sayed-Ahmed MM et al (2012) MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev 13(2):591–598. https://doi.org/10.7314/APJCP.2012.13.2.591
Article
Google Scholar
Elsheikh S, Green AR, Aleskandarany MA, Grainge M, Paish CE, Lambros MB et al (2008) CCND1 amplification and cyclinD1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109(2):325–335. https://doi.org/10.1007/s10549-007-9659-8
Article
Google Scholar
Bender RJ, Mac GF (2013) Expression of VEGF and semaphoring genes define subgroups of triple negative breast cancer. PLoS One 8(5):e61788. https://doi.org/10.1371/journal.pone.0061788
Article
Google Scholar
Li X, Gao Y, Li J, Zhang K, Han J, Li W, Hao Q, Zhang W, Wang S, Zeng C, Zhang W, Zhang Y, Li M, Zhang C (2018) FOXP3 inhibits angiogenesis by downregulating VEGF in breast cancer. Cell Death Dis 9(7):744. https://doi.org/10.1038/s41419-018-0790-8
Article
Google Scholar
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM (2020) Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 9(1):84
Article
Google Scholar
Gray R, Bhattacharya S, Bowden C, Miller K, Comis RL (2009) Independent review of e2100: a phase iii trial of bevacizumab plus paclitaxel versus paclitaxel in women with metastatic breast cancer. J Clin Oncol 27(30):4966–4972. https://doi.org/10.1200/JCO.2008.21.6630
Article
Google Scholar
Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, Delozier T, Sohn JH, Provencher L, Puglisi F, Harbeck N, Steger GG, Schneeweiss A, Wardley AM, Chlistalla A, Romieu G (2010) Phase iii study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247. https://doi.org/10.1200/JCO.2008.21.6457
Article
Google Scholar
Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON et al (2011) Ribbon-1: randomized, double-blind, placebo-controlled, phase iii trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29(10):1252–1260. https://doi.org/10.1200/JCO.2010.28.0982
Article
Google Scholar
Ravikumar G, Ananthamurthy A (2014) Cyclin D1 expression in ductal carcinoma of the breast and its correlation with other prognostic parameters. J Cancer Res Ther 10(3):671–675. https://doi.org/10.4103/0973-1482.138135
Article
Google Scholar
Hartel PH et al (2016) Cyclin D1 expression in triple-negative breast cancer with new treatment implications. Clin Oncol 1:1044
Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P (2017) Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One 12(11):e0188068. https://doi.org/10.1371/journal.pone.0188068
Article
Google Scholar
Reis-Filho JS, Savage K, Lambros MB, James M, Steele D, Jones RL et al (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19(7):999–1009. https://doi.org/10.1038/modpathol.3800621
Article
Google Scholar
Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL (1998) L. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 18(8):4499–4508. https://doi.org/10.1128/MCB.18.8.4499
Article
Google Scholar
Roy PG, Pratt N, Purdie CA, Baker L, Ashfield A, Quinlan P et al (2010) High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer 127:355–360
Google Scholar
Peurala E, Koivunen P, Haapasaari KM, Bloigu R, Jukkola-Vuorinen A (2013) The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast Cancer Res 15(1):R5. https://doi.org/10.1186/bcr3376
Article
Google Scholar