The optical properties of prepared collide were investigated before and after doping the carbon nanoparticles with iron oxide nanoparticles. The UV–Vis absorption spectra exhibited a redshift as the doping ratios with iron oxide nanoparticles were increased, while the photoluminescence of carbon nanoparticles doped with iron oxide nanoparticles exhibited a constant fluorescence emission peaks in the visible region at 597 nm upon excitation at a wavelength of 250 nm, but with lower intensity, as the doping ratio increased; this is because of the effect of iron oxide nanoparticles in quenching the carbon nanoparticles fluorescence this results goes with [1, 3, 13,14,15].
The structural study of composite carbon nanoparticles doped with different iron oxide nanoparticles has been confirmed using Fourier transform infrared spectrum (FTIR) and X-ray diffraction investigation (XRD). From the FTIR results, it has been successfully found that the C–H C=C, C≡C, C=O, C=O=C, different iron oxide bonds, and CNT-IO are confirmed by pulsed laser ablation in the liquid process. XRD patterns that took over a scanning interval from 20° to 80° proved the presence of (02) and (100) planes which belong to graphene layers of multi-walled carbon nanotubes and the honeycomb lattice of the single graphene sheet, also the existent for different planes of iron oxide nanoparticles according to [1, 3, 8, 9].
Morphological properties of composite carbon nanoparticles doped with iron oxide nanoparticles were investigated by transmission electron microscopy(TEM) and energy dispersive spectrum (EDS) are measured; the TEM measurement showed an individual and two straight long multi-walled carbon nanotubes MWCNT with a hollow core adhered. While for composite nanoparticles, the TEM study reveals that there are two types of composite carbon and iron oxides nanoparticles are present; the first type is the iron oxide nanoparticles that attached to the walls of CNT, and the second rare type is carbon-coated iron oxide nanoparticles. The EDS measurements reveal the content of carbon, iron, and oxygen. Readiness strategy utilized prompted getting Fe3O4/CNTs nanoparticles measurements adjusting the band hole and prompted getting a littler band hole (2.0 eV) Fe3O4/CNTs. XRD, AFM gem size, surface morphology, and molecule size and surface geology properties to all examples demonstrated the effective sights of the readied mixes these outcome goes with 14–17, 20–21].
The anti-bacterial movement of combined merged nanocomposite was tried against four diverse microbe microorganisms: two gram-negative (Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumoniae)) and two kinds of gram-positive (Streptococcus pyogenes) and Staphylococcus aureus) with dual strategies; principal strategy is fluid culture cycle that is diverse grouping of nanocomposite arranged in dualistic laser powers that is 80 mJ and 200 mJ at that point fixing it with various iron oxide nanopowders. The greatest outcomes were acquired from the 400 μg ml−1 of Fe3O4/CNTs nanocomposite drugged with various proportions of nanoparticles. The sterile activity of combination of carbon tube and iron oxide nanocomposite was performed as assay in contradiction of four categories of pathogens; two types of them were the distinction of being gram-negative of bacterial wall as Escherichia coli, Klebsiella pneumoniae, and the other two kinds of them which are distinct being gram-positive wall like Streptococcus pyogens and Staphylococcus aureus by well-dispersion techniques. The hatched microscopic organism’s media prior to adding the composite of particles appeared in Figs. 3, 5, and 6. The suspension fixations utilized were 400 μg ml−1 of just carbon nanotubes utilized as control, and afterward doped with iron oxide NPs of three distinct focuses (100, 250, 300 μg ml−1), which spoke to by doping proportions (20, 38, 43%) separately, gotten by laser removal of carbon and iron focuses in deionized water at a laser energy thickness of 5.2 J/cm2. Composite nanoparticles, which have demonstrated the best anti-bacterial activity in a fluid medium technique, are continually tried in a well-dissipating technique procedure and find that the best combinations of 400 μg/ml carbon nanotubes, which show the best anti-bacterial activity, are improved and end up being better when doped with 43% nanoparticles that indicate the outcome correspondence with [14,15,16,17,18,19].
As shown in Fig. 4, determining the inhibiting zone IZ region by capacity of that nobbling the iron oxide-MWCNTs nanocomposite container improved the anti-growth of bacteria activity interaction with pathogen culture distinguishing gram-negative, and this activity increased clearly with the increase of the IO NPs concentrations. Figure 3 exhibits the histograms of the anti-bacterial activity against two gram-negative E. coli and K. pneumoniae pathogens which were induced by carbon nanotubes at 400 μg ml−1 concentration and composite multi-walled carbon nanotubes doped with iron oxide NPs at three different concentrations ratios (20, 38, 42%). Figure 5 shows the inhibition zone (IZ) image of carbon nanotubes of 400 μg ml−1 which represented as control without adding iron oxide nanoparticles, and composite carbon and iron oxide NPs in three concentrations that maintained above according to [8, 9, 20, 21].
Figures 5 and 6 demonstrate the histograms and inhibition zone (IZ) image, respectively, of the anti-bacterial growth in media against gram-positive Streptococcus pyogens (S. pyogenes) and Staphylococcus aureus (S. aureus) pathogens which were induced by carbon nanotubes at 400 μg ml−1 concentration and composite carbon nanotubes doped with iron oxide NPs at three different concentrations ratios (20, 38, 42%) that goes with [4, 8, 9, 14, 15].
At last, utilizing the Fe3O4/CNTs as anti-microbial was tested against four different pathogen bacteria two gram-negative (Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae)), and two gram-positive (Streptococcus pyogenes (S. pyogenes) and Staphylococcus aureus (S. aureus)) by two methods: the first method is a liquid medium method in which different concentrations of multi-walled carbon nanoparticles were prepared in two laser energies (80 mJ and 200 mJ) then doping them with different iron oxide nanoparticles; the best results were obtained from the 400 μg ml−1 multi-walled wall carbon nanoparticles doped with different ratios of iron oxide nanoparticles. The composite nanoparticles that exhibited the best anti-bacterial activity in the liquid medium method are tested by the second method, the good diffusion method, and reveals that the best concentration of multi-walled carbon nanotubes (400 μg ml−1) that exhibit the best anti-oval activity are enhanced and become better when it doped with 43% iron oxide nanoparticles.