Al-Shmgani HS, Mohammed WH, Sulaiman GM, Saadoon AH (2017) Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol 45(6):1234–1240. https://doi.org/10.1080/21691401.2016.1220950
Article
Google Scholar
Luo K, Jung S, Park K-H, Kim Y-R (2018) Microbial biosynthesis of silver nanoparticles in different culture media. J Agric Food Chem 66(4):957–962. https://doi.org/10.1021/acs.jafc.7b05092
Article
Google Scholar
Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370. https://doi.org/10.1007/s12011-020-02138-3
Article
Google Scholar
Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir. https://doi.org/10.1021/la103190n
Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1-2):1–13. https://doi.org/10.1016/j.cis.2010.02.001
Article
Google Scholar
Suliman GM, Hussein HT, Saleem MNM (2015) Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bull Mater Sci 38(3):639–644
Article
Google Scholar
Taha ZK, Hawar SN, Sulaiman GM (2019) Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett 41:899–914
Article
Google Scholar
Moradnia F, Fardood ST, Ramazani A, Min BK, Joo SW, Verma RS (2021) Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: green sol-gel synthesis, characterization, and photocatalytic applications. J Clean Prod 288:125632
Article
Google Scholar
Fardood ST, Moradnia F, Ghalaichi AH, Pajouh SD, Heidari M (2020) Facile green synthesis and characterization of zinc oxide nanoparticles using tragacanth gel: investigation of their photocatalytic performance for dye degradation under visible light irradiation. Nanochem Res 5:69–76
Google Scholar
Moradnia F, Fardood ST, Ramazani A, Osali S, Abdolmaleki I (2020) Green sol–gel synthesis of CoMnCrO4 spinel nanoparticles and their photocatalytic application. Micro Nano Lett 15:674–677
Article
Google Scholar
Irshad R, Tahir K, Li B, Ahmad A, Siddiqui A, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B Biol 170:241–246
Article
Google Scholar
Tahir K, Nazir S, Li B, Khan AU, Khan ZUH, Gong PY, Khan SU, Ahmad A (2015) Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater Lett 156:198–201
Article
Google Scholar
Tahir K, Ahmad A, Li B, Khan AU, Nazir S, Khan S, Khan ZUH, Khan SU (2016) Preparation, characterization and an efficient photocatalytic activity of Au/TiO2 nanocomposite prepared by green deposition method. Mater Lett 178:56–59
Article
Google Scholar
Tahir K, Li B, Khan S, Nazir S, Khan ZUH, Khan AU, Islas RU (2015) Enhanced chemocatalytic reduction of aromatic nitro compounds by biosynthesized gold nanoparticles. J Alloys and Compd 651:322–327
Article
Google Scholar
McLeod MC, McHenry RS, Beckman EJ, Roberts CB (2003) Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in Perfluropolyether/CO2 reverse micelle systems. J Phys Chem B 107:2693–2700
Article
Google Scholar
Ravikumar S, Inbaneson SJ, Uthiraselvam M, Priya SR, Ramu A et al (2011) Diversity of endophyticactinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4:294–296
Google Scholar
Poongodi S, Karuppiah V, Sivakumar K, Kannan L (2012) Marine actinobacteria of the coral reef environment of the Gulf of Mannar biosphere reserve, India: a search for antioxidant property. Int J Pharm Pharm Sci 4:316–321
Google Scholar
El-Naggar NE, Abdelwahed NAM (2014) Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. J Microbiol 52(1):53–63. https://doi.org/10.1007/s12275-014-3410-z
Article
Google Scholar
Mohamedin A, El-Naggar NE, Hamza SS, Sherief AA (2015) Green synthesis, characterization and antimicrobial activities of silver nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a living nanofactory: statistical optimization of process variables. Curr Nanosci 11(5):640–654. https://doi.org/10.2174/1573413711666150309233939
Article
Google Scholar
Chandra P, Sharma RK, Arora DS (2020) Antioxidant compounds from microbial sources: a review. Food Res Int 129:108849. https://doi.org/10.1016/j.foodres.2019.108849
Article
Google Scholar
Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a 342 review. Colloids Surf B 121:474–483
Article
Google Scholar
Feng Q, Wu J, Chen G, Cui F, Kim T et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Article
Google Scholar
Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318
Article
Google Scholar
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346
Article
Google Scholar
Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phy Chem B 107(26):6269–6275. https://doi.org/10.1021/jp0274076
Article
Google Scholar
Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by Filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(356):2694–2699. https://doi.org/10.1021/la0613124
Article
Google Scholar
Viedma PM, Ercolini D, Ferrocino I, Abriouel H, Omar NB (2010) Effect of polythene film activated with enterocin EJ97 in combination with EDTA against Bacillus coagulans. LWT Food Sci Technol 43(3):514–518. https://doi.org/10.1016/j.lwt.2009.09.020
Article
Google Scholar
Sun P, Otto-Hanson LK, Arenz BE, Ma Q, Kinkel LL (2015) Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. Eur J Soil Biol 70:58–66. https://doi.org/10.1016/j.ejsobi.2015.07.004
Article
Google Scholar
Faghrizonooz N, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of streptomyces sp. ERI-3. Sci Iran 18(6):1631–1635. https://doi.org/10.1016/j.scient.2011.11.029
Article
Google Scholar
Al Juraifani A, Ghazwani A (2015) Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporumand Alternaria solani. Afr J Biotechnol 14(26):2170–2174
Article
Google Scholar
Sandhya C, Ashwini KG (2017) Production and characterization of actinomycin D from Streptomyces parvulus isolated from aloe vera (l.) Burm. F. and its antimicrobial activity. Int J Pharm Sci Rev Res 46(1):169–175
Google Scholar
Shirley DA, Sreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomycesspecies. Dig J Nanomater Biostruct 5(2):447–451
Google Scholar
Pourali P, Baserisalehi M, Afsharnezhad S, Behravaran J (2013) The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals 26(1):189–196. https://doi.org/10.1007/s10534-012-9606-y
Article
Google Scholar
Fayaz AM, Balaji K, Kalaichelvan P, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74(1):123–126. https://doi.org/10.1016/j.colsurfb.2009.07.002
Article
Google Scholar
Narasimha G, Janardhan AM, Khadri H, Mallikarjuna K (2013) Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by actinomycetes isolative. Int J Nano Dimens 4:77–83
Google Scholar
Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and theirpotential applications in biomedicine. J Appl Biomed 15(4):241–248. https://doi.org/10.1016/j.jab.2017.03.004
Article
Google Scholar
Shah Z, Hassan S, Shaheen K, Khan SA, Gul T, Anwar Y, al-shaeri MA, Khan M, Khan R, Haleem MA, Suo H (2020) Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: an efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater Sci Eng C 111:110829. https://doi.org/10.1016/j.msec.2020.110829
Article
Google Scholar
Hosseini MR, Sarvi MN (2015) Recent achievements in the microbial synthesisof semiconductor metal sulfide nanoparticles. Mater Sci Semicond Process 40:293–301. https://doi.org/10.1016/j.mssp.2015.06.003
Article
Google Scholar
Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Köller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512–518. https://doi.org/10.1039/B914875B
Article
Google Scholar
Fouda A, Hassan SE-D, Abdo AM, El-Gamal MS (2019) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces Spp. Biol Trace Elem Res 195(2):707–724
Article
Google Scholar
Rai M, Ingle AP, Gade A, Duran N (2014) Synthesis of silver nanoparticles by Phomagardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnol 9:71–75
Article
Google Scholar
Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Kor J Microbiol Biotechnol 39:77–85
Google Scholar
Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevor JT (1977) Metal- microbe interactions: contemporary approaches. Adv Microb Physiol 38:177
Article
Google Scholar
Sharma S, Ahmad N, Prakash A, Singh VN, Ghosh AK, Mehta BR (2010) Synthesis of crystalline Ag nanoparticles (AgNPs) from microorganisms. Mater Sci Appl 1:1–7
Google Scholar
Alsharif SM, Salem SS, Abdel-Rahman MA, Fouda A, Eid AM, El-Din Hassan S, Awad MA, Mohamed AA (2020) Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 6(5):e03943
Article
Google Scholar
Ammar H, El-Desouky T (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA 1N and Penicillium expansum HA 2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121(1):89–100. https://doi.org/10.1111/jam.13140
Article
Google Scholar
Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi A (2010) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Med Sci 2:94–99
Google Scholar
Chang T-Y, Chen C-C, Cheng K-M, Chin C-Y, Chen Y-H, Chen X-A, Sun J-R, Young J-J, Chiueh T-S (2017) Trimethyl chitosan-capped silver nanoparticles with positive surface charge: their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surf B Biointerfaces 155:61–70. https://doi.org/10.1016/j.colsurfb.2017.03.054
Article
Google Scholar
Ajitha B, Reddy YAK, Reddy PS (2014) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta Mol Biomol Spectrosc 121:164–172
Article
Google Scholar
Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608. https://doi.org/10.1093/jxb/err460
Article
Google Scholar
Koksal N, Kafkas E, Sadighazadi S, Kulahlioglu I (2015) Floral fragrances of daffodil under salinity stress. Rom Biotechnol Lett 20:10600–10610
Google Scholar
Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7(1):8. https://doi.org/10.1186/1743-8977-7-8
Article
Google Scholar
Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–2670. https://doi.org/10.1128/AAC.46.8.2668-2670.2002
Article
Google Scholar
Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103. https://doi.org/10.1088/0957-4484/18/22/225103
Article
Google Scholar
Perumalla A, Hettiarachchy NS (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44(4):827–839. https://doi.org/10.1016/j.foodres.2011.01.022
Article
Google Scholar