Akiva E, Copp JN, Tokuriki N, Babbitt PC (2017) Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci USA 114:E9549–E9558. https://doi.org/10.1073/pnas.1706849114
Article
Google Scholar
Amborella Genome Project, Albert VA, Barbazuk WB et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089–1241089. https://doi.org/10.1126/science.1241089
Article
Google Scholar
Bang SY, Kim JH, Lee PY et al (2012) Confirmation of Frm2 as a novel nitroreductase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 423:638–641. https://doi.org/10.1016/j.bbrc.2012.05.156
Article
Google Scholar
Banks JA, Nishiyama T, Hasebe M et al (2011) The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963. https://doi.org/10.1126/science.1203810
Article
Google Scholar
Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662
Article
Google Scholar
Biniek C, Heyno E, Kruk J et al (2017) Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane. Planta 245:807–817. https://doi.org/10.1007/s00425-016-2643-y
Article
Google Scholar
Bo Z, Hongjuan H, Xiaoyan F et al (2018) Degradation of trinitrotoluene by transgenic nitroreductase in Arabidopsis plants. Plant Soil Environ 64:379–385. https://doi.org/10.17221/655/2017-PSE
Article
Google Scholar
Bobyk KD, Ballou DP, Rokita SE (2015) Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid. Biochemistry 54:4487–4494. https://doi.org/10.1021/acs.biochem.5b00410
Article
Google Scholar
Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241. https://doi.org/10.1146/annurev-arplant-050213-040212
Article
Google Scholar
Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the marchantia polymorpha genome. Cell 171:287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030
Article
Google Scholar
Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475. https://doi.org/10.1016/j.envpol.2009.08.022
Article
Google Scholar
Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125
Google Scholar
Chaw S-M, Liu Y-C, Wu Y-W et al (2019) Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat Plants 5:63–73. https://doi.org/10.1038/s41477-018-0337-0
Article
Google Scholar
de la Cruz IP, Ma L, Horvitz HR (2014) The caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-Box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 10:e1004175. https://doi.org/10.1371/journal.pgen.1004175
Article
Google Scholar
De Oliveira IM, Henriques JAP, Bonatto D (2007) In silico identification of a new group of specific bacterial and fungal nitroreductases-likeproteins. Biochemical and Biophysical Research Communications 355(4):919–925. https://doi.org/10.1016/j.bbrc.2007.02.049
de Oliveira IM, Zanotto-Filho A, Moreira JCF et al (2009) The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. Yeast. https://doi.org/10.1002/yea.1734
Durchschein K, Hall M, Faber K (2013) Unusual reactions mediated by FMN-dependent ene- and nitro-reductases. Green Chem 15:1764. https://doi.org/10.1039/c3gc40588e
Article
Google Scholar
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113
Article
Google Scholar
El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995
Article
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903
Article
Google Scholar
Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. https://doi.org/10.1093/nar/gkr944
Article
Google Scholar
Guillén H, Curiel JA, Landete JM et al (2009) Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium lactobacillus plantarum WCFS1. J Agric Food Chem 57:10457–10465. https://doi.org/10.1021/jf9024135
Article
Google Scholar
Hannink N, Rosser SJ, French CE et al (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172. https://doi.org/10.1038/nbt1201-1168
Article
Google Scholar
Hecht HJ, Erdmann H, Park HJ et al (1995) Crystal structure of NADH oxidase from Thermus thermophilus. Nat Struct Mol Biol 2:1109–1114. https://doi.org/10.1038/nsb1295-1109
Article
Google Scholar
Hu J, Chuenchor W, Rokita SE (2015) A switch between one- and two-electron chemistry of the human flavoprotein iodotyrosine deiodinase is controlled by substrate. J Biol Chem 290:590–600. https://doi.org/10.1074/jbc.M114.605964
Article
Google Scholar
Hu J, Su Q, Schlessman JL, Rokita SE (2019) Redox control of iodotyrosine deiodinase: redox control of iodotyrosine deiodinase. Protein Sci 28:68–78. https://doi.org/10.1002/pro.3479
Article
Google Scholar
Johnston EJ, Rylott EL, Beynon E et al (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science 349:1072–1075. https://doi.org/10.1126/science.aab3472
Article
Google Scholar
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
Google Scholar
Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874. https://doi.org/10.1105/tpc.107.055202
Article
Google Scholar
Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070
Article
Google Scholar
Kobori T, Sasaki H, Lee WC et al (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem 276:2816–2823. https://doi.org/10.1074/jbc.M002617200
Article
Google Scholar
Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Article
Google Scholar
Lang D, Ullrich KK, Murat F et al (2018) The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J 93:515–533. https://doi.org/10.1111/tpj.13801
Article
Google Scholar
Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067
Article
Google Scholar
Liu X, Liu Y, Huang P et al (2017) The genome of medicinal plant macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol Plant 10:975–989. https://doi.org/10.1016/j.molp.2017.05.007
Article
Google Scholar
Madej T, Lanczycki CJ, Zhang D et al (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42:D297–D303. https://doi.org/10.1093/nar/gkt1208
Article
Google Scholar
Manina G, Bellinzoni M, Pasca MR et al (2010) Biological and structural characterization of the Mycobacterium smegmatis nitroreductase NfnB, and its role in benzothiazinone resistance: NfnB and BTZ resistance. Mol Microbiol 77:1172–1185. https://doi.org/10.1111/j.1365-2958.2010.07277.x
Article
Google Scholar
Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. https://doi.org/10.1093/nar/gkw1129
Article
Google Scholar
Martin W, Rujan T, Richly E et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251. https://doi.org/10.1073/pnas.182432999
Article
Google Scholar
McHale MW, Kroening KD, Bernlohr DA (1996) Identification of a class of Saccharomyces cerevisiae mutants defective in fatty acid repression of gene transcription and analysis of the frm2 gene. Yeast 12:319–331. https://doi.org/10.1002/(SICI)1097-0061(19960330)12:4%3C319::AID-YEA914%3E3.0.CO;2-#
Article
Google Scholar
Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41. https://doi.org/10.1186/gb-2013-14-5-r41
Article
Google Scholar
Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/gky1100
Article
Google Scholar
Mukherjee A, Rokita SE (2015) Single amino acid switch between a flavin-dependent dehalogenase and nitroreductase. J Am Chem Soc 137:15342–15345. https://doi.org/10.1021/jacs.5b07540
Article
Google Scholar
Novakova M, Mackova M, Antosova Z et al (2010) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls. Bioengineered Bugs 1:419–423. https://doi.org/10.4161/bbug.1.6.12723
Article
Google Scholar
Patel P, Young JG, Mautner V et al (2009) A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1984. Mol Ther 17:1292–1299. https://doi.org/10.1038/mt.2009.80
Article
Google Scholar
Paterson ES, Boucher SE, Lambert IB (2002) Regulation of the nfsA Gene in Escherichia coli by SoxS. J Bacteriol 184:51–58. https://doi.org/10.1128/JB.184.1.51-58.2002
Article
Google Scholar
Peakall R, Ebert D, Scott LJ et al (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae): exceptionally low diversity genetic in Wollemi pine. Mol Ecol 12:2331–2343. https://doi.org/10.1046/j.1365-294X.2003.01926.x
Article
Google Scholar
Peterson FJ, Mason RP, Hovsepian J, Holtzman JL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014
Google Scholar
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
Article
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
Google Scholar
Shiryev SA, Papadopoulos JS, Schaffer AA, Agarwala R (2007) Improved BLAST searches using longer words for protein seeding. Bioinformatics 23:2949–2951. https://doi.org/10.1093/bioinformatics/btm479
Article
Google Scholar
Song HN, Jeong DG, Bang SY, Paek SH, Park BC, Park SG, Woo EJ. (2015) Crystal structure of the fungal nitroreductase Frm2fromSaccharomyces cerevisiae. Protein Science 24(7):1158–1163. https://doi.org/10.1002/pro.2686
Thiel Z, Rivera-Fuentes P (2019) Single-molecule imaging of active mitochondrial nitroreductases using a photo-crosslinking fluorescent sensor. Angew Chem Int Ed. https://doi.org/10.1002/anie.201904700
Thomas SR, McTamney PM, Adler JM et al (2009) Crystal structure of iodotyrosine deiodinase, a novel flavoprotein responsible for iodide salvage in thyroid glands. J Biol Chem 284:19659–19667. https://doi.org/10.1074/jbc.M109.013458
Article
Google Scholar
Tyagi M, de Brevern AG, Srinivasan N, Offmann B (2008) Protein structure mining using a structural alphabet. Proteins 71:920–937. https://doi.org/10.1002/prot.21776
Article
Google Scholar
Valiauga B, Williams EM, Ackerley DF, Čėnas N (2017) Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity. Arch Biochem Biophys 614:14–22. https://doi.org/10.1016/j.abb.2016.12.005
Article
Google Scholar
Wang B, Powell SM, Hessami N et al (2016) Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole. Nitric Oxide 60:32–39. https://doi.org/10.1016/j.niox.2016.09.003.
Wang M, Jiang Y-Y, Kim KM et al (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582. https://doi.org/10.1093/molbev/msq232
Article
Google Scholar
Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427
Article
Google Scholar
Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851
Article
Google Scholar
Williams EM, Little RF, Mowday AM et al (2015) Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 471:131–153. https://doi.org/10.1042/BJ20150650
Article
Google Scholar
Yap J-YS, Rohner T, Greenfield A et al (2015) Complete chloroplast genome of the wollemi pine (Wollemia nobilis): structure and evolution. PLoS ONE 10:e0128126. https://doi.org/10.1371/journal.pone.0128126
Article
Google Scholar
You S-H, Zhu B, Han H-J et al (2015) Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. Plant Biotechnol Rep 9:417–430. https://doi.org/10.1007/s11816-015-0379-y
Article
Google Scholar
Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31:3370–3374. https://doi.org/10.1093/nar/gkg571
Article
Google Scholar
Zhang L, Rylott EL, Bruce NC, Strand SE (2017) Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase. Plant Mol Biol 95:99–109. https://doi.org/10.1007/s11103-017-0639-z
Article
Google Scholar