Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718
Google Scholar
Satpati GG, Pal R (2018) Microalgae-biomass to biodiesel: a review. J Algal Biomass Utln 9(4):11–37
Google Scholar
Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequences. J Phycol 41(6):1236–1247
Google Scholar
Baytut Ö, Gürkanli CT, Gönülol A, Özkoç I (2014) Molecular phylogeny of Chlorella-related chlorophytes (Chlorophyta) from Anatolian freshwaters of Turkey. Turk J Bot 38(3):600–607
Google Scholar
Huss V, Frank C, Hartmann E, Hirmer M, Kloboucek A, Seidel B, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598
Google Scholar
Wan M, Rosenberg JN, Faruq J, Betenbaugh MJ, Xia J (2011) An improved colony PCR procedure for genetic screening of Chlorella and related microalgae. Biotechnol Lett 33:1615–1619
Google Scholar
Tear C, Lim C, Wu J, Zhao H (2013) Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris. Microb Cell Factories 12(1):106–112
Google Scholar
El-Sheekh MM, Gheda SF, El-Sayed A, Abo Shady A, El-Sheikh M, Schagerl M (2019) Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. Environ Sci Pollut Res 26:18520–18532
Google Scholar
Machado RR, Lourenço SO (2008) Propriedades nutricionais de microalgas usadas como alimento de moluscos bivalves: uma revisão. Museu Nacional, Série Livros 30:281–304
Google Scholar
Borges-Campos V, Barbarino E, Lourenço SO (2010) Crescimento e composição química de dez espécies de microalgas marinhas em cultivos estanques. Cienc Rural 40:339–347
Google Scholar
Paes CRPS, Faria GR, Tinoco NAB, Castro DJFA, Barbarino E, Lourenco SO (2016) Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat Am J Aquat Res 44(2):275–292
Google Scholar
Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with ‘premium’ microalgae Nannochloropsis gaditana. Mar Biotechnol 11:585–595
Google Scholar
El-Sheekh MM, Abomohra A, Abd El-Azim M, Abou-Shanab R (2017) Effect of temperature on growth and fatty acids profile of the biodiesel promising microalga Scenedesmus acutus. Biotechnology Agronomy Soc. Environment 21(4):233–239
Google Scholar
Liang G, Mo Y, Tang J, Zhou Q (2011) Improve lipid production by pH shifted strategy in batch culture of Chlorella protothecoides. Afr J Microbiol Res 5:5030–5038
Google Scholar
López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593
Google Scholar
Zhila NO, Kalacheva GS, Volova TG (2011) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52
Google Scholar
Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102:26–34
Google Scholar
Gross, M. Development and optimization of novel algal cultivation systems. Master thesis, Iowa State University, Food Science and Human Nutrition Department 2013.
Abomohra A, Shang H, El-Sheekh MM, Eladel H, Ebaid R, Wang S, Wang Q (2019) Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresour Technol 288:121514
Google Scholar
El-Sheekh MM, El-Gamal A, Bastawess AE, El-Bokhomy A (2017) Production and characterization of biodiesel from the unicellular green alga Scenedesmus obliquus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(8):783–793
Google Scholar
El-Sheekh MM, Gheda S, El-Sayed AB, Abo Shady A, El-Sheikh M, Schagerl M (2019) Outdoor cultivation of the green microalga Chlorella vulgaris under culture stress conditions as a feedstock for biofuel. Environ Sci Pollut Res 26:18520–18532
Google Scholar
Hernández D, Solana M, Riaño B, García-González MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378
Google Scholar
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96
Google Scholar
El-Sheekh M, El-Shourbagy I, Shalaby S, Hosny S (2014) Effect of feeding Arthrospira platensis (Spirulina) on growth and carcass composition of hybrid red tilapia (Oreochromis niloticus x Oreochromis mossambicus). Turk J Fish Aquat Sci 14(2):471–478
Google Scholar
Harun R, Yip JW, Thiruvenkadam S, Ghani WA, Cherrington T, Danquah MK (2014) Algal biomass conversion to bioethanol─a step-by-step assessment. Biotechnol J 9(1):73–86
Google Scholar
Ismail M, Ismail G, El-Sheekh MM (2020) Potential assessment of some micro and macroalgal species for bioethanol and biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (In press). https://doi.org/10.1080/15567036.2020.1758853
Upadhyaya S, Tiwari S, Arora N, Singh DP (2016) Microbial protein: a valuable component for future food security. In: Singh JS, Singh DP (eds) Microbes and Environmental Management. Studium Press, New Delhi, pp 259–279
Google Scholar
Phang SM, Chu WL. (1999) Algae culture Collection, Catalogue of Strains. Institute of Post Graduate Studies and Research, University of Malaya, Kuala Lumpur, Malaysia, 77 pp.
Wang GG, Li YH, Xia P (2005) A simple method for DNA extraction from sporophyte in the brown alga Laminaria japonica. J Appl Phycol 17(1):75–79
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729
Google Scholar
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
Google Scholar
Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury JB. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61.
Guillard RRL, Sieracki MS (2005) Counting cells in cultures with the light microscope. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 239–252
Google Scholar
Griffiths MJ, Garcin C, Van Hille RP, Harrison STL (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods 85(2):119–123
Google Scholar
Liang F, Wen X, Geng Y, Ouyang Z, Luo L et al (2013) Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor. J Microbiol Biotechnol 23(4):539–544
Google Scholar
Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA et al (2018) Microbial growth and its control. In: Brock Biology of Microorganisms, 15th edn. Pearson Education, New York, pp 173–208
Google Scholar
Muthukumar A, Elayaraja S, Ajithkumar TT, Kumaresan S, Balasubramanian T (2012) Biodiesel production from marine microalgae Chlorella marina and Nannochloropsis salina. J Pet Technol Altern Fuel 3(5):58–62
Google Scholar
Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89:189–198
Google Scholar
Radwan SS (1978) Sources of C20 polyunsaturated of fatty acids for use. Appl Microbiol Biotechnol 35:421–430
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
Google Scholar
Herbert D, Phipps PJ, Stravge RE (1971) Determination of total carbohydrates. Methods Microbiol 5(B):390–344
Google Scholar
Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
Google Scholar
Money NP (2016) Fungal diversity. In: Watkinson SC, Boddy L, Money NP (eds) The fungi, Third Edition. Academic Press, Elsevier, pp 1–36
Google Scholar
Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9(4):e92460
Google Scholar
Arora M, Sahoo D. Green Algae. In: Sahoo D, Seckbach J, editors. (2015) The Algae World (cellular origin, life in extreme habitats and astrobiology). Springer, Dordrecht, pp. 91–120.
Google Scholar
El-Bondkly AMA. (2014) Sequence analysis of industrially important genes from Trichoderma. Biotechnology and Biology of Trichoderma. Elsevier. 377–392.
Giovannoni S, Wood N, Huss V (1993) Molecular phylogeny of oxygenic cells and organelles based on small-subunit ribosomal RNA sequences. In: Lewin RA (ed) Origins of Plastids: Symbiogenesis. Prochlorophytes and the Origins of Chloroplasts. Chapman and Hall, New York, pp 159–170
Google Scholar
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31(1):1–46
Google Scholar
Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556
Google Scholar
Montoya EYO, Casazza AA, Aliakbarian B, Perego P, Converti A, De Carvalho JCM (2014) Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnol Prog 30(4):916–922
Google Scholar
EL-Mohsnawy E, El-Sheekh MM, Mabrouk M, Zoheir W (2020) Enhancing accumulation of omega 3 and 9 fatty acids in Chlorella vulgaris under mixotrophic nutrition. The Journal of Animal and Plant Sciences 30(2):485–492
Google Scholar
Battah M, El-Ayoty Y, Abomohra A, El-Ghany SA, Esmael A (2013) Optimization of growth and lipid production of the chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Appl Sci J 28:1536–1543
Google Scholar
Gale, Thomson. Ocean chemical processes) [retrieved December 2, 2006].
Talukdar J, Kalita MC, Goswami BC (2012) Effects of salinity on growth and total lipid content of the biofuel potential microalga Ankistrodesmus falcatus (Corda) Ralfs. Int J Sci Eng Res 3:1–7
Google Scholar
Al-Hasan RH, Ali AM, Ka’Wash HH, Radwan SS (1990) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp., potential in mariculture. J Appl Phycol 2:215–222
Google Scholar
Takagi M, Karseno K, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226
Google Scholar
Gu N, Lin Q, Li G, Tan Y, Huang L, Lin J (2012) Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci 12(6):631–637
Google Scholar
Ohse S, Derner RB, Ozório RÁ, Corrêa RG, Furlong EB, Cunha PCR (2015) Lipid content and fatty acid profiles in ten species of microalgae. Idesia 33(1):93–102
Google Scholar
Stansell GR, Gray VM, Sym SD (2012) Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol 24(4):791–801
Google Scholar
Huflejt ME, Tremolieres A, Pineau B, Lang JK, Hatheway J, Packer L (1990) Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol 94(4):1512–1521
Google Scholar
Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853
Google Scholar
Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297
Google Scholar
Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23(4):721–726
Google Scholar
Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54
Google Scholar
Laurens LML, Dempster TA, Jones HDT, Wolfrum EJ, Van Wychen S, McAllister JSP, Gloe LM (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84(4):1879–1887
Google Scholar