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Abstract 

Background:  Fungal peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze lignin 
biodegradation.

Results:  PER-K (peroxidase synthesis codon gene) was transformed from Aspergillus niger strain AN512 deposited 
in the National Center for Biotechnology Information with the accession number OK323140 to Escherichia coli strain 
(BL21-T7 with YEp356R recombinant plasmid) via calcium chloride heat-shock method. The impact of four parameters 
(CaCl2 concentrations, centrifugation time, shaking speed, growth intensity) on the efficacy of the transformation 
process was evaluated. Furthermore, peroxidase production after optimization was assessed both qualitatively and 
quantitatively, as well as SDS-PAGE analysis. The optimum conditions for a successful transformation process were 
as follows: CaCl2 concentrations (50 mM), centrifugation time (20 min), shaking speed (200 rpm), and growth optical 
density (0.45). PCR and gel electrophoresis detect DNA bands with lengths 175, 179, and 211 bps corresponding to 
UA3, AmpR, and PER-K genes respectively besides partially sequencing the PER-K gene. Pyrogallol/hydrogen peroxide 
assay confirmed peroxidase production, and the activity of the enzyme was determined to be 3924 U/L. SDS-PAGE 
analysis also confirms peroxidase production illustrated by the appearance of a single peroxidase protein band after 
staining with Coomassie blue R-250.

Conclusion:  A successful peroxidase-gene (PER-K) transformation from fungi to bacteria was performed correctly. 
The enzyme activity was screened, and partial sequencing of PER-K gene was analyzed successively. The protein 
3D structure was generated via in silico homology modeling, and determination of binding sites and biological 
annotations of the constructed protein were carried out via COACH and COFACTOR based on the I-TASSER structure 
prediction.
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Key points

•	 The optimization of PER-K fungal gene transforma-
tion in Escherichia coli was performed.

•	 The isoelectric point value of peroxidase is 6.98 with 
higher thermal stability.

•	 The 3D structures of the recombinant gene revealed 
high-quality model.
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Background
Peroxidases are a group of oxidative enzymes produced 
by living microbes either intra- or extracellular in a 
response to pollutant existence such as dyes and aro-
matic hydrocarbons in the same surrounding environ-
ments [1]. These compounds are oxidized through a free 
radical mechanism to render the products less toxic to 
the living cell either through loss of biological activity or 
reduction in the bioavailability or adsorption. Peroxidase 
enzymes catalyze oxidative reactions via hydrogen per-
oxide utilization and protect the microorganisms from 
oxidation by free radicals [2]. These enzymes have been 
involved in different biotechnological purposes such as 
cosmetics, pulping, paper manufacturing, and wastewa-
ter treatment [3]. Fungal peroxidase plays an important 
role in lignin biodegradation and other environmental 
applications, such as biobleaching, biopulping, and biore-
mediation of soil. Therefore, ligninolytic enzymes of fun-
gal origin have been extensively studied [4, 5]. White-rot 
fungi Phanerochaete chrysosporium is the most resplend-
ent producing strain for lignin-degrading enzymes. Both 
lignin peroxidase lipA and manganese peroxidase mnp 
genes in Aspergillus niger have been extensively isolated 
in several studies [6, 7]. The wide application of peroxi-
dase production for industrial potentials is limited due to 
low yield and expensive production cost. The increased 
demands for peroxidase production shed the light to 
discover new microorganisms capable of efficient per-
oxidase production. For feasible and efficient industrial 
applications, large-scale production for these enzymes is 
needed. Peroxidases availability in the market including 
Bjerkandera adusta peroxidase, horseradish peroxidase 
[HRP], and streptavidin peroxidase from Streptomyces 
avidinii probably could not meet the increasing indus-
trial demand for peroxidase [1]. Recombinant peroxidase 
enzyme technique is one of the best ways to achieve this 
purpose [8]. This technique is the calcium chloride heat-
shock transformation process which enhances bacterial 
cells to uptake DNA from the surrounding environment. 
The calcium ions role is predicted to be a cation bridge 
in the cell suspension between the phosphate backbone 
of DNA and negative charges on phosphorylated lipid A 
in lipopolysaccharide (LPS) [9, 10]. The ice-cold CaCl2 
solution activates the binding of DNA to the surface of 
the cell, which then enters the cell by a short period of 
heat shock [11]. Selection markers such as drug resist-
ance are usually used to identify the successful trans-
formation of the interested gene [12]. This technique is 
usually used to transform cells with plasmids for cloning, 
recombinant protein expression, and long-term storage 
of the plasmids [13]. Therefore, the present study aimed 
to transform the competent E. coli BL21-T7 with recom-
binant plasmid carrying A. niger peroxidase enzyme 

coding gene, to confirm the peroxidase enzyme produc-
tion by the new recombinant E. coli, and to determine 
the culture conditions that support optimum peroxidase 
production recombinant strain. In addition, peroxidase 
production from transformed E. coli was estimated quali-
tatively and quantitatively as a new potential applicable 
source for extracellular peroxidase production.

Material and methods
Microbial strains and plasmid isolation
Two strains, E. coli BL21 — T7 and Aspergillus niger 
AN512, were cultivated from glycerol stock in nutrient 
agar (NA) (Oxoid, USA) and potato dextrose agar (PDA) 
(Oxoid, USA) for 24 h and 4 days for bacterial and fun-
gal strains, respectively. Shuttle plasmid YEp356R (1.0μg/
μl) ATCC 37737 was previously isolated using EasyPure 
Plasmid MiniPrep Kit, from E. coli Dh5α-k12. Selective 
step is carried out on MacConkey agar (Oxoid, USA) 
supplemented with 50 μg/ml ampicillin (Fig. S1) [14, 15]. 
All bacterial, fungal, and plasmid samples were obtained 
from Applied Microbial Genetics Department, Genetic 
Engineering and Biotechnology Division, NRC, Giza, 
Egypt.

Preparation of competent cells
Different concentrations of CaCl2, 0, 25, 50, 75, 100, 125, 
150, and 200 mM were prepared, and improved buffer 
was prepared as follows: add 100 ml of glycerin into 50 
mM CaCl2 solution, and then, complete the final volume 
to 1000 ml with ddH2O. E. coli BL21-T7 cells were picked 
from NA and grown on Luria-Bertani (LB) broth medium 
(Oxoid, USA) under vigorous incubation shaking con-
dition (200 rpm) for 10 to 16 h until it reaches optical 
density (OD600) of 0.2 to 0.45. The resulted cell pellet 
was harvested by centrifugation undercooling (−4 °C) at 
10,000 rpm for 5 min and washed three times by CaCl2 
(50 mmol) supplemented with 17% glycerin. Finally, the 
cells were suspended in CaCl2 buffer and distributed in 
1.5 ml Eppendorf [14, 15].

Construction of recombinant plasmid
After plasmid isolation, it digested with endonuclease 
buffers. The desired gene PER-K was also isolated from 
fungal DNA after its extraction with the same restriction 
enzymes which give complementary ends in plasmid and 
gene for easily recombination step. Digestion process was 
composed of 500 μl of DNA with 55 μl from both endo-
nuclease buffers (1 μg DNA restriction 0.5 μg), and this 
ratio is also used for plasmid digestion. Restriction endo-
nucleases and digestion buffers were illustrated in Tables 
S1 and S2.
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Optimization of transformation conditions
Several steps were performed according to [16] for the 
determination of the efficiency of the transformation 
process. The different culture conditions, such as shaking 
speed (50, 70, 90, 120 150, and 200 rpm), growth turbid-
ity using OD600 values (0–0.5), and centrifugation time (5, 
10, 15, and 20 min), were tested to prepare E. coli com-
petent cells and assessed by calculating the transforma-
tion efficiency. All optimization items were established in 
triplicates.

Genomic detection of successful transformant
The recombinant plasmid was isolated and extracted 
using QuickClean II Plasmid Purification Kit 50 rxns. 
Then, the plasmids were screened for their purity and 
concentration through NanoDrop and agarose gel elec-
trophoresis, the appropriate samples were prepared for 
PCR reaction as a template, and specific primers were 
used for amplification plasmid genes (Per-K, UA3, and 
ampR). The primers used were illustrated in Table 1.

PCR detection and amplification of desired gene Per-K 
as well as two plasmid gene markers were performed 
under different specific conditions according to each 
gene. For Per-K, the PCR conditions were denaturation 
step for the first cycle adjusted at 95 °C for 1 min, exten-
sion step for the final cycle was at 4 °C overnight, while 
the rest of other cycles of the reaction was denaturation 
cycles (2–34) at 95 °C for 30 s, annealing cycles (2-34) at 
56 °C for 30 s, and extension (cycles 2–34) at 72 °C for 40 
s (Table 1).

In case of URA3, PCR conditions of denaturation step 
for the first cycle are adjusted at 93 °C for 1 min, and 
extension step for the final cycle was at 4 °C overnight, 
and the rest of other cycles of the reaction was as fol-
lows: denaturation cycles (2–37) at 93 °C for 30 s, anneal-
ing cycles (2–37) at 59 °C for 30 s, and extension (cycles 
2–37) at 73 °C for 40 s (Table 1).

Regarding AmpR, PCR conditions comprised of dena-
turation step for the first cycle adjusted at 93 °C for 1 
min, and extension step for the final cycle was at 4 °C 
overnight, and the rest of other cycles of the reaction was 

as the follows: denaturation cycles (2–33) at 93 °C for 30 
s, annealing cycles (2–33) at 55 °C for 30 s, and extension 
(cycles 2–33) at 74 °C for 40 s (Table 1).

Isolation and cloning per‑K gene
per-K gene is isolated from fungus through total genomic 
DNA extraction. Its purity was determined via Nan-
oDrop and estimated at about 50 μg/ml. The extracted 
DNA was then digested with restriction digestion solu-
tion SalI digestion and HindIII (Table S2). On the other 
hand, plasmid was isolated from the E. coli host and its 
purity was determined by NanoDrop and estimated 
1.00, and it also digested with the same restriction solu-
tions that are mentioned before (Table S2). The recom-
bination step is done in a 1.5 mL Eppendorf tube that is 
kept on the ice at −20 °C with different ratios of plasmid 
and digested DNA for the DNA library. The successful 
step was composed of 300 μl of digested DNA with 100 
μl plasmid solution, and then, this mixture was mixed at 
very slow rotation speed with a thin, alcohol-sterilized 
glass rod in a clockwise direction for 15 s. After that, the 
mixture was kept in water bath 32 °C for 15 min; finally, 
it was mixed with sterile M9 medium with glucose and 
incubated without shaking for 4 h before transferring to 
LB broth with ampicillin for selecting our recombinant.

Determination of peroxidase molecular weight 
by SDS‑PAGE
The molecular weight of peroxidase protein was deter-
mined through SDS–PAGE in a Mini Protean III Elec-
trophoresis Cell (Bio-Rad), with 12% resolving and 4% 
stacking gel. Proteins were stained using the Coomassie 
blue staining technique, and the molecular weight was 
estimated by comparison to molecular weight ladder (10 
to 180 kDa).

Detection of peroxidase activity
Peroxidase activity was evaluated using the method of 
Rayner and Boddy (1988). Briefly, a 2-day incubated cul-
ture at 30 °C was grown in nutrient agar plates, and the 
resulting colonies were immersed with 100 μl of 0.4% 

Table 1  DNA-specific primers of the studied genes amplifications

Gene Primers Nucleotide sequence GC% Tm °C Product size

Peroxidase F-POX1 5-CCA​AAT​CTC​CTC​TTC​CTT​A-3 42.1 56.8 211

R-POX2 5-TGT​CCT​CTA​ACA​CTT​CTC​GCA-3 47.6 58

URA​ F-URA3 5-GCA​AGG​GCT​CCC​TAG​CTA​CT-3 60 60 175

R-URA3 5-AAT​GCG​TCT​CCC​TTG​TCA​TC-3 50 60.1

AmpR F-AmpR 5-GAG​TAT​TCA​ACA​TTT​CCG​-3 52 61.6 179

R-AmpR 5-CGG​GGC​GAA​AAC​TCT-3 65 36.2
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(v/v) hydrogen peroxide and 1% pyrogallol in water. Col-
onies that developed yellow-brown color was considered 
as positive for peroxidase production [17].

Total protein concentration in culture filtrate
Culture filtrate total protein was determined and cal-
culated using the Bradford method for the quantitative 
determination of peroxidase activity. The isolate was 
incubated in tryptone soy broth (TSB) medium for 5 
days, and the culture supernatant was separated by cen-
trifugation at 6000 rpm for 25 min. A total of 50 μl of the 
supernatant was transferred to a clean test tube, and the 
volume was brought to 1 ml with phosphate buffer (0.1 
M, pH 6.5). Five milliliters of protein reagent solution 
“Coomassie brilliant blue G-250 in ethanol” was added. 
The final reading was detected spectrophotometrically at 
595 nm after 2 min and before 1 h of the reagent addi-
tion. The amount of total protein detected was calcu-
lated in μg/mL according to the standard equation: Y = 
9011.1x–157.98 where x = absorbance at 595 nm [18].

Quantitative determination of peroxidase activity
Peroxidase activity was evaluated according to the rate 
of hydrogen peroxide oxidation of pyrogallol to purpuro-
gallin as exhibited by modified method of Chance and 
Maehly. Reaction mixture of 350 μl was prepared, com-
posed of 5% w/v pyrogallol dissolved in 100 mM potas-
sium phosphate buffer (pH 6) and 25 μl of 5 days’ culture 
supernatant. The reaction mixture without culture super-
natant was prepared as blank. The reaction was begun by 
the addition of 0.5% hydrogen peroxide (30%), and the 
readings were measured spectrophotometrically from 
the beginning with an interval of 30 s for 3 min at 420 nm 
[19, 20]. Peroxidase activity was calculated according to 
the equation U/ml: abs. (final)—abs. (beginning)/0.001.

Analysis of physicochemical parameters of peroxidase 
enzyme
To compute the physicochemical parameters of the per-
oxidase protein, ExPASy’s ProtParam program was used. 
These properties can be derived from a protein sequence 
which includes parameters such as molecular weight 
(M.Wt), instability index (II), aliphatic index (AI), theo-
retical pI, and grand average of hydropathicity (GRAVY). 
The instability index provides an approximation of our 
protein’s stability, an instability index less than 40 is pro-
jected to be stable, and a score greater than 40 indicates 
that the protein may be unstable [21].

Construction of the 3D enzymes structure by homology 
modeling
The amino acid sequences of the Aspergillus niger per-
oxidase enzymes were submitted to the SWISS-MODEL, 

and the 3D structure of the peroxidase enzymes was 
automatically generated by first transferring conserved 
atom coordinates provided by the desired template 
alignment [22]. Endo β-1,4-glucanase from Bacillus 
licheniformis was utilized as a template to perform the 
homology modeling of the fungal cellulase structure. 
The enzyme models were obtained as a PDB file, and the 
model was energy minimized via Gromos96 tools in the 
Swiss-PDB viewer [23].

Identification of the enzymes catalytic residues
The active-site residues of the peroxidase enzyme were 
predicted using the I-TASSER web server (https://​zhang​
group.​org/I-​TASSER/). I-TASSER web server detects 
catalytic residues in the primary structural alignment, 
which was then viewed in PyMOL. According to a pre-
viously reported approach, the probable active-site resi-
dues were superimposed on a template structure in this 
case [24]. COACH, a meta-server, was then used to pre-
dict the protein-ligand interaction site. To construct the 
final ligand binding site predictions, the predictions were 
merged with data from the COFACTOR, FINDSITE, and 
ConCavity analyses.

Results
Positive transformant selection
Out of 225 isolated colonies, about 14 single colonies 
were able to grow on M9 minimal medium supplemented 
with 1% glucose and incubated at 37 °C for 24 h with the 
lowest shaking (50 rpm), nutrient agar medium was also 
used to cultivate the promising 14 colonies as standard 
plates. The fourteen different transformant colonies were 
confirmed for successful cloning with the recombinant 
plasmid through cultivation on MacConkey agar sup-
plemented with 30 μg/mL ampicillin. All colonies were 
grown well with pinky color. MacConkey agar is consid-
ered a good selective medium for our E. coli host strain as 
it was gram-negative lactose-fermenting bacteria besides 
the presence of ampicillin allows us to easily pick up 
grown cells with successful recombinant plasmid.

Optimization of plasmid transformation
Optimization for plasmid transformation was per-
formed through CaCl2 adjustment, so different CaCl2 
solution concentrations were used, and transforma-
tion efficiency increased at concentration 25 mM and 
gradually increased by increasing solution concentra-
tion and reached its maximum value at 50 mM of CaCl2 
solution and then decreased gradually until 150 mM 
(Fig.  1a). In the present study, the highest transforma-
tion efficiency reached its maximum when the OD600 
values were between 0.41 and 0.45 (Fig.  1b). The trans-
formation efficiency of competent cells was also affected 

https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
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by centrifugation time where it was neglectable value at 
centrifugation less than 5 min and begun to increase after 
5 min, and its efficiency reaches a maximum at 20 min 
and then decreased gradually until be neglectable again 
(Fig. 1c). Shaker’s speed during competent cells prepara-
tion is also considered a significant factor in the transfor-
mation efficiency. Transformation efficiency in our study 

was increased gradually from 50 rpm until it reached its 
maximum of 11 × 106/μg at 200 rpm (Fig. 1d).

PCR detection of the recombinant plasmid
Three genes (our insert per-K, UA3, and AmpR genes) 
were used as target sequences for PCR amplification in 
order to detect our insert plasmid into host cells. Agarose 

Fig. 1  Optimization for plasmid transformation. a CaCl2 concentrations. b Different absorbance values. c Different centrifugation time. d Different 
shaking speeds. TE, transformation efficiency



Page 6 of 12Khedr et al. Journal of Genetic Engineering and Biotechnology           (2022) 20:94 

gel electrophoresis and DNA sequences (Fig. S2) showed 
that Per-K, UA3, and AmpR amplicons were 211, 175, and 
179 bps, respectively. Per-K sequence scored through 
online BLAST, 100% query cover, with a total and maxi-
mum score of 390 with Aspergillus officinalis peroxi-
dase 72-like (LOC109840690), mRNA (Figs. S3 and S4 
Table 2).

PER‑K gene isolation and cloning
The complete gene sequence was analyzed. The open 
reading frame (ORF) started from 141 to 1145 bps, while 
the total nucleotide sequence was 1330 bps (Fig. S5). 
The amino acid polypeptide resulted from ORF was 334 
which gives protein with an expected molecular weight 
near to 33.4 KDa as analyzed through SnapGene Viewer 
software (version 4.1.3).

Partial purification of peroxidase and molecular weight 
determination
The results showed that 5.9% of ammonium sulfate was 
given complete precipitation of the enzyme with maxi-
mum enzyme activity. After the precipitation of per-
oxidase with ammonium sulfate, the sediment was 
redissolved in citrate-phosphate buffer (pH 7.2) and dia-
lyzed against the same buffer. The obtained purified bac-
terial peroxidase showed a single protein band (55 KDa) 
on SDS-PAGE after staining with Coomassie blue R-250 
(Fig. 2).

Peroxidase activity
E. coli cloned strain was detected as a positive for peroxi-
dase enzyme production, illustrated by the appearance 
of yellow-brown color after immersing growth with 1% 
pyrogallol and 0.4% hydrogen peroxide. The quantitative 
evaluation of peroxidase production and activity was cal-
culated by subtracting the final absorbance of the reac-
tion mixture (0.456) from the initial absorbance (0.064) at 
420 nm divided by 0.001. The obtained peroxidase enzy-
matic activity detected was 392.4 U/ml after 5 days of the 
incubation period.

Physicochemical properties of peroxidase
The ProtParam tool was used to predict the physico-
chemical parameters of the peroxidase protein enzyme. 
The physical parameters showed that the enzyme’s 
molecular weight is 36,650.92 Da, and the peroxidase 
enzyme’s instability index is 48.26. Aspergillus niger 
AN512 peroxidase has a calculated isoelectric point pI 
value of6.98 and a higher aliphatic index (85.57), sug-
gesting that it is a thermally stable protein. Meanwhile, 
the peroxidase enzyme’s negatively grand average of 
hydropathicity (GRAVY) values revealed its hydrophi-
licity (−0.156). The total number of negatively charged 

Table 2  The highest six sequences that give high similarity with the peroxidase gene of our interest

Description Scientific name Max score Total score Query cover Per. ident Acc. len Accession

Peroxidase 72-like (Asparagus officinalis) A. officinalis 689 689 75% 100.00% 334 XP_020265010.1

Peroxidase 72-like (Asparagus officinalis) A. officinalis 554 554 75% 79.17% 329 XP_020272526.1

Peroxidase (Asparagus officinalis) A. officinalis 550 550 75% 78.57% 329 BAA94962.1

Peroxidase 72 (Elaeis guineensis) E. guineensis 547 547 75% 79.04% 331 XP_010924103.1

Peroxidase 72 (Elaeis guineensis) E. guineensis 541 541 75% 76.58% 330 XP_010936646.1

Peroxidase 72-like (Phoenix dactylifera) P. dactylifera 541 541 75% 78.74% 331 XP_038987667.1

Fig. 2  Molecular weight of recombinant peroxidase by 
electrophoretic analysis on 7.5% SDS-PAGE. PM, molecular weight 
marker proteins. PEP, purified peroxidase. CR, crude extract
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residues (Asp + Glu) is 37, while the total number of pos-
itively charged residues (Arg + Lys) is also 37 (Table 3).

Modeling the 3D structures of Aspergillus niger AN512 
peroxidase enzymes
The amino acid sequences of Aspergillus niger AN512 
peroxidase were subjected to homology modeling via 
SWISS-MODELweb server to generate the 3D struc-
tures of the peroxidase enzyme. The cellulase enzyme 
was constructed using an Arabidopsis thaliana peroxi-
dase (52.49% sequence similarity). Figure  3a illustrates 
the generated 3D structures of Aspergillus niger AN512 
peroxidase. Furthermore, the I-TASSER web server was 

also used to generate high-quality model predictions of 
3D structure (Fig. 3b) and biological function of protein 
Aspergillus niger AN512 peroxidase protein.

Validation of homology model
To evaluate the predicted 3D structure of the homol-
ogy model, Ramachandran’s plot of the model was con-
structed to determine the stereochemical quality of the 
protein structure by analyzing residue-by-residue geome-
try. The backbone conformation and overall stereochemi-
cal quality of cellulase of Aspergillus niger AN512 were 
calculated by analyzing the phi (Φ) and psi (ψ) torsion 
angles, and the results were illustrated in the Ramachan-
dran plots in Fig. 4.

Determination of binding site
Biological annotations of the target protein were 
measured by COACH and COFACTOR based on the 
I-TASSER structure prediction. While COFACTOR uses 
structure comparison and protein-protein networks to 
deduce protein functions (ligand-binding sites, EC, and 
GO), COACH is a meta-server technique that collects 
various function annotation results (on ligand-binding 
sites) from the COFACTOR, TM-SITE, and S-SITE 
programs. According to a prediction by I-TASSER algo-
rithm for the protein 3D structure, 5 ligands, calcium 
(2+) at binding site residues (74, 77, 78, 79, 81, 83), 
b) 3-bromoquinolin-4-amine (2NW) at binding site 
residues (200, 202, 203, 204, 205, 266, 273, 274, 277), 

Table 3  Summary of the ProtParam data for the Aspergillus niger 
AN512 peroxidase

Details Peroxidase

Amino acid residue 334

Molecular weight 36650.92

Theoretical pI 6.98

Positively charged residue 37

Negatively charged residue 37

Total no. atoms 5144

Molecular formula C1626H2571N441O490S16
Aliphatic index (%) 85.57

Instability index (%) 48.26

GRAVY −0.156

Fig. 3  a The SWISS-MODEL generated 3D structures of Aspergillus niger AN512 peroxidase enzymes. b The predicted 3D structures by I-TASSER



Page 8 of 12Khedr et al. Journal of Genetic Engineering and Biotechnology           (2022) 20:94 

N,2-dihydroxybenzamide (SHA) at binding site residues 
(69, 72, 73, 100, 170) were detected Fig. 5.

Discussion
The concentration of CaCl2 solution is an important fac-
tor affecting the transformation efficiency of competent 
cells [25]. Li et al. reported that the transformation effi-
ciency of competent cells increased by rising the concen-
tration of CaCl2 solution an reached its maximum at 75 
mM and then decreased rapidly when the concentration 
exceeded 100 mM [26]. This result is slightly similar to 
result in the present study as maximum transformation 

efficiency reached 50 mM and decreased as CaCl2 con-
centration increased until 150 mM. This inverse propor-
tion between CaCl2 concentration and transformation 
efficiency may be due to lipid array on cell membrane is 
destroyed by 75 to 100 mM Ca2+, and then, a liquid crys-
tal would be formed. The bacteria would be swollen when 
incubated in hypotonic calcium chloride solution, at 0 °C, 
and DNA in the mixture can be formed into hydroxyapa-
tite (anti-DNase) and then stick to the surface of cells 
[27, 28]. The cellular absorption ability of exogenous 
DNA will be increased after heat shock at 42 °C. This 
process may be inhibited, and hence, the transformation 

Fig. 4  Ramachandran’s plot calculations on the 3D models of peroxidase of Aspergillus niger AN512 computed by the SWISS-MODEL web-server 
to show the favored regions for backbone dihedral angles against of amino acid residues in protein structure a) General (No Proline or Glycine) b) 
Glycine Only c) Pre-Proline Only d) Proline only
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Fig. 5  Predicted binding sites in complex with ligands
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efficiency will be decreased when the concentration of 
calcium chloride solution exceeds 100 mM.

The early logarithmic growth period of E. coli was the 
very important factor, the best growth condition, and 
easily be induced when the OD600 meets 0.35 to 0.45 
Meanwhile, during this phase, the bacteria are in the best 
tolerance condition suffering the physical damage, and 
this could increase the transformation efficiency [29, 30]. 
Sambrook and Russell [16] found out that the absorptiv-
ity of E. coli obviously decreased because of the mutation 
of hofQ during the stationary phases.

Chan et al. [25] reported that centrifugation time had 
little effect on transformation efficiency, but when the 
time is exceeding 10 min, some dead bacteria would form 
sediment together with activity bacteria, which could 
degrade transformation efficiency to a certain extent. On 
the other hand, almost all of active bacteria could form 
sediment when centrifugation time was 5 min. So, using 
centrifugation time from 5 to 10 min for preparation of 
competent cells will give maximum efficiency.

Catalase-peroxidase gene from the pathogenic fungus 
Penicillium marneffei was isolated by Pongpom et  al. 
[31], and DNA sequence analysis of this gene revealed an 
ORF encoding a 748 amino acid polypeptide with a pre-
dicted molecular mass of 82.4 KDa within the amino acid 
sequence was 45/69% identical to that of catalase-peroxi-
dases from many bacteria and fungi [29, 31].

The E. coli cloned strain was similar to that reported by 
Falade et al. [1] They isolated freshwater bacterial strains 
capable of peroxidase production by applying the same 
identification technique. Also, Al-Senaidy and Ismael 
[32] obtained peroxides enzyme with 55 KDa. Earlier 
reports also performed on bacterial peroxidases purified 
from Bacillus sp. VUS Dawkar et al. [33] showed perox-
ides enzyme with molecular weight of 43 KDa. Isolation 
and cloning of fungus per-K gene in E. coli expression 
host have numerous advantages including easy extrac-
tion method and huge productivity in shorter time in 
comparison with fungus isolate. Also the used E. coli host 
is more safe than Aspergillus niger isolate on the human 
health in case of using it for commercial production of 
the enzyme.

Ammonium sulfate is a salt used in the precipita-
tion of enzymes due to its high solubility; therefore, it 
was used in the precipitation of different enzymes [34]. 
Partial purification was performed by gradual satura-
tion ratios ranged from 40 to 90% of ammonium sulfate 
to precipitate crude enzyme, and then, the peroxidase 
activity was checked in each fraction to check the most 
suitable saturation according to precipitation of per-
oxidase enzyme. A total of 90% of ammonium sulfate 
was given completely precipitation of the enzyme with 

maximum enzyme activity which is similar to these 
reported by Kalyani et  al. [35] and Mustafa [36]. The 
result of peroxidase activity was in approval with the 
studies obtained by Falade et  al. [1] who isolated two 
bacterial strains capable for producing a significantly 
high peroxidase activity with 5250 and 5833 U/L for 
both strains. Other studies reported a lower [24] per-
oxidase activity for different Streptomyces strains with 
270 and 535 U/L. [37, 38] The reason for different per-
oxidase production between different isolates is not yet 
clearly understood; however, the excessive production 
of peroxidase in the cloned E. coli strain confirmed the 
successful recombinant process with the desired results 
obtained. Peroxidase-producing microbes possess high 
potential for industrial applications. One of the main 
significantly important application is dye treatment 
process in wastewater streams. Peroxidase-producing 
microorganisms also serve as important cause in the 
pretreatment of lignocellulose material which eventu-
ally leads to the conversion of lignocellulose, complex 
molecules to ethanol. Fungi contain diverse important 
genes encoded several proteins and enzymes used in 
medical, pharmaceutical, and industrial uses [2, 39–41]. 
The physical parameters of the obtained protein were 
predicted, and results showed that Aspergillus niger 
AN512 peroxidase has a calculated isoelectric point pI 
value of 6.98 and a higher thermal stability. The amino 
acid sequences of Aspergillus niger AN512 peroxidase 
were subjected to homology modeling via SWISS-
MODEL web server to generate the 3D structures of the 
peroxidase enzyme. The Ramachandran’s plots of the 
model were constructed to determine the stereochemi-
cal quality of the protein structure by analyzing resi-
due-by-residue geometry, and results revealed that the 
obtained model quality is high according to constructed 
Ramachandran’s plots.

Conclusion
This study showed that the optimum conditions for a 
successful transformation of the PER-K gene of Asper-
gillus niger AN 512 inside E. coli BL21-T7  were include 
50 mM CaCl2 concentration, 20-min centrifugation 
time, 200 rpm shaking speed, and growth optical den-
sity of 0.45. PCR detection of plasmid DNA was through 
amplification of UA3, AmpR, and PER-K genes. Par-
tial sequencing of the PER-K gene (under submission 
in NCBI GeneBank) has an activity of 3924 U/L and 
molecular weight of 55 KDa. Recombinant peroxidase 
enzyme technique can be used to achieve large-scale 
production for this enzyme for feasible and efficient 
industrial applications.
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