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Abstract 

Background:  In seek of potent and non-toxic iminoguanidine derivatives formerly assessed as active Pseudomonas 
aeruginosa inhibitors, a combined mathematical approach of quantitative structure-activity relationship (QSAR), 
homology modeling, docking simulation, ADMET, and molecular dynamics simulations were executed on iminoguan-
idine derivatives.

Results:  The QSAR method was employed to statistically analyze the structure-activity relationships (SAR) and had 
conceded good statistical significance for eminent predictive model; (GA-MLR: Q2

LOO = 0.8027; R2 = 0.8735; R2
ext = 

0.7536). Thorough scrutiny of the predictive models disclosed that the Centered Broto-Moreau autocorrelation - lag 
1/weighted by I-state and 3D topological distance-based autocorrelation—lag 9/weighted by I-state oversee the 
biological activity and rendered much useful information to realize the properties required to develop new potent 
Pseudomonas aeruginosa inhibitors. The next mathematical model work accomplished here emphasizes finding a 
potential drug that could aid in curing Pseudomonas aeruginosa and SARS-CoV-2 as the drug targets Pseudomonas 
aeruginosa. This involves homology modeling of RNA polymerase-binding transcription factor DksA and COVID-19 
main protease receptors, docking simulations, and pharmacokinetic screening studies of hits compounds against 
the receptor to identify potential inhibitors that can serve to regulate the modeled enzymes. The modeled protein 
exhibits the most favorable regions more than 90% with a minimum disallowed region less than 5% and is simulated 
under a hydrophilic environment. The docking simulations of all the series to the binding pocket of the built protein 
model were done to demonstrate their binding style and to recognize critical interacting residues inside the binding 
site. Their binding constancy for the modeled receptors has been assessed through RMSD, RMSF, and SASA analysis 
from 1-ns molecular dynamics simulations (MDS) run.

Conclusion:  Our acknowledged drugs could be a proficient cure for SARS-CoV-2 and Pseudomonas aeruginosa drug 
discovery, having said that extra testing (in vitro and in vivo) is essential to explain their latent as novel drugs and 
manner of action.
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Background
Coronaviruses are separated into four kinds: Alphac-
oronavirus, Betacoronavirus, Gammacoronavirus, and 
Deltacoronavirus [1]. Many species, including humans, 
have been shown to suffer respiratory, intestinal, neu-
rological disorders, and hepatic caused by these viruses, 
particularly Betacoronavirus [2]. The World Health 
Organization (WHO) named it 2019-novel coronavirus 
(2019-nCoV) after determining the involvement of coro-
navirus in COVID-19 [3] (https://​www.​who.​int/​emerg​
encies/​disea​ses/​novel-​coron​avirus-​2019). Referable to 
world health emergencies, the International Committee 
of Coronavirus Study Group (ICCSG) proposed using 
the named severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) for 2019-nCoV [4]. Because of the 
onset of pandemic crises around the world, SARS-CoV-2 
has now developed a major community health anxi-
ety [5]. The WHO has labeled COVID-19 a community 
health matter of global concern because of its speedy 
spreading and ever-increasing procreation/transmission 
number [6]. As of August 13, 2021, the number of con-
firmed cases is 205,338,159 and the number of confirmed 
deaths is 4,333,094 (https://​www.​who.​int/​emerg​encie​
ss/​disea​ses/​novel-​coron​avirus-​2019). During infection 
with SARS-CoV-2, the amount of Pseudomonas aerugi-
nosa increases, encouraging inflammation by accelerat-
ing the recruitment of inflammatory cells and increasing 
the level of angiopoietin II (https://​www.​who.​int/​emerg​
encie​ss/​disea​ses/​novel-​coron​avirus-​2019). The protease 
is one of the numerous products of the SARS-CoV-2 
binding target [7, 8]. Drugs remain the only therapeutic 
option for Pseudomonas aeruginosa and SARS-CoV-2, 
despite efforts to create a vaccine [9]. Due to different 
medication resistance scenarios around the world, the 
number of people dying annually from Pseudomonas aer-
uginosa and SARS-CoV-2 is steadily rising [9, 10]. Given 
the lack of viable medicines and the continual growth 
in transmission numbers and fatality cases. Computer-
aided drug discovery (CADD) [11] could be a good strat-
egy to discover hit drugs for Pseudomonas aeruginosa 
and SARS-CoV-2 treatment. This computer-aided drug 
design and development technique will cut down on the 
cost and time it takes to find new therapeutic candidates 
[12]. Ahmad et al. have reported the docking, molecular 
dynamic simulation, and MM-PBSA studies of Nigella 
Sativa compounds to find likely normal antiviral drugs 
for SARS-CoV-2 treatment [13]. Amin and his cowork-
ers have reported the use of Monte Carlo-based QSAR, 

virtual screening, and molecular docking study of some 
inhouse molecules as inhibitors of COVID-19 [14]. Sev-
eral CADD methods have been used to study and design 
hit drugs such as anticancer [15, 16], monoamine oxi-
dase B inhibitors [17], antimicrobial [18], dengue virus 
[19], and antidiabetic [20] drugs, etc. To select a chemical 
compound as a viable treatment, the following in silico 
technique such as quantitative structure-activity rela-
tionship (QSAR), molecular docking simulation, absorp-
tion, metabolism, excretion, and distribution (ADME), 
and dynamics modeling of many drugs from known 
drugs library are used against the target receptors. In the 
present research, we executed QSAR studies on some 
chemical libraries using genetic function approximation-
multiple linear regression (GFA-MLR). The best model 
out of the many generated model will be systematically 
analyzed. The results gained from these methods were 
equated for validation. Next, we perform the homol-
ogy modeling of our query protein, then docking simu-
lation to obtain information about the main interaction 
types from the built model receptor active pocket. Their 
drug-likeness parameters of the most beneficial docked 
compound were assessed via in silico approach. Finally, 
simulations were executed to assess the dynamic stable-
ness of the docked receptors. The current modeling study 
would offer understanding into the structural demands of 
these COVID-19 and Pseudomonas aeruginosa inhibitors 
and may aid in planning novel drugs.

Methods
Density function theory (DFT/B3LYP) with the 6-31G+ 
(d, p) basis sets in Gaussian 09 were used to thor-
oughly optimize the geometries of the iminoguani-
dine derivatives (PubChem database accession number 
AID_131512). The PaDEL v2.20 program [21] was used 
to calculate the properties for QSAR analysis. The asso-
ciation between one dependent variable (pMIC50) of 25 
compounds and various independent variables was stud-
ied using GA-MLR statistical techniques. The genetic 
approximation (GA) technique which is included in 
QSARINS v2.2.4 [22] was used to perform multiple lin-
ear regression (MLR) analysis of the molecular descrip-
tors. By dividing the database into two groups, a training 
set to construct the quantitative model and a test set to 
confirm the proficiency of the molded model. All the 
minimum inhibitory concentration (MIC) activity data 
in the experiments were first translated to the negative 
logarithm of MIC (pMIC50 = −log10 (MIC)). Table S1 

Keywords:  QSAR, Homology modeling, Molecular docking, ADMET, MD simulations, SARS-CoV-2, Pseudomonas 
aeruginosa, and iminoguanidine derivatives

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergenciess/diseases/novel-coronavirus-2019
https://www.who.int/emergenciess/diseases/novel-coronavirus-2019
https://www.who.int/emergenciess/diseases/novel-coronavirus-2019
https://www.who.int/emergenciess/diseases/novel-coronavirus-2019


Page 3 of 17Edache et al. Journal of Genetic Engineering and Biotechnology           (2022) 20:88 	

shows the chemical structures of iminoguanidine com-
pounds as well as their activity levels. To test the inter-
nal validity of the regression model, we employed the 
LOO (leave-one-out) approach [23, 24]. This (Q2LOO) 
is the most frequent way of determining a model’s inner 
prediction ability. We used randomized validation [25] 
(Q2rand, R2rand), root mean square error of the training 
set (RMSEc), and coefficient of determination to assess 
model robustness in addition to (Q2LOO). For external 
validation, we used Q2F1 [26], Q2F2 [27], and Q2F3 [28], 
as well as the concordance correlation coefficient (CCC) 
and root mean square error of prediction (RMSEp) as 
recommended by the Organization for Economic Coop-
eration and Development (OECD) [29]. QL2OO > 0.5, R2 
> 0.6, 0.85 ≤ k ≤ 1.15 or 0.6, 0.85 ≤ k’ ≤ 1.15 [30], Q2F1 
> 0.5, Q2F2 > 0.5, Q2F3 > 0.5, and CCC > 0.80 are some 
of the evaluation criteria.

Homology modeling
To build the initial structure for the molecular dock-
ing and MD simulation studies, homology modeling of 
Pseudomonas aeruginosa and SARS-CoV-2 secondary 
structure was undertaken. The NCBI protein sequence 
database (http://​www.​ncbi.​nlm.​nih.​gov) was used to 
search the sequence of amino acids for Pseudomonas aer-
uginosa and SARS-CoV-2. A BLASTp search against the 
Brookhaven Protein Data Bank (PDB) was used to select 
the template structure, which was based on sequence 
identity. The chain A, SARS-CoV-2 virus main protease 
(PDB 7BUY) as the query structure from NCBI and the 
identified template structures (PDB code: 5R7Y, 6XA4, 
7BRO, 7CB7, 7CBT, 7CWC, and 7KFI) were modest in 
BLAST results. According to the BLAST results for RNA 
polymerase-binding transcription factor DksA (plas-
mid) [Pseudomonas aeruginosa] (query id: QNI 16641.1) 
and the identified templates PDB 4IJJ (query cover: 95%, 
E-value: 5e−31, percentage identity: 44.03%) and PDB 
1TJL (query cover: 85%, E-value: 1e−19, percentage iden-
tity: 35%) were used. Following that, using ClustalX [31], 
the coordinates for the query structure were assigned 
from the template structure using pairwise sequence 
alignment. MODLOOP Server [32] was used to correct 
irregular secondary structures. The 3D protein struc-
tures were then built using MODELLER 10.1 [33]. As a 
result, the model with the lowest discrete optimized pro-
tein energy (DOPE) score was chosen, and the model 
was then energy minimized (add hydrogen and Gasteiger 
charge) using Chimera v1.10.2 software with the AMBER 
FF14SB force field. SAVES server was used to calculate 
stereochemical characteristics, the atomic model’s (3D) 
compatibility with its amino acid residues, bond lengths, 
bond angles, and side-chain planarity were all utilized to 
verify the model’s quality. PROCHECK [34] was used to 

calculate Ramachandran plots to verify the stereochemi-
cal quality of modeled protein structures. Verify3D [35] 
and ERRAT [36] were used to create an environment 
profile. WHATIF was used to investigate residue packing 
and atomic contact, whereas WHATCHECK was utilized 
to calculate the Ramachandran plot’s Z Score [37]. Using 
PyMOL, the RMSD was calculated by superimposing the 
3D modeled protein with the template.

Structure‑based virtual screening and docking
To perform molecular docking simulations and virtual 
screening, we utilized Autodock Vina [38] with the PyRx 
[39] interface tool. Before being converted to PDBQT 
format, all the optimized ligand molecules and the mod-
eled proteins were uploaded into the PyRx work sta-
tion. Then, using the Lamarckian genetic algorithm, 
virtual screening was performed with the following 
parameters: exhaustiveness 8, the grid for SARS-CoV-2 
was set to center_x = 14.2355, center_y = 0.4381, 
center_z = 5.5567, size_x = 38.0396286631, size_y = 
65.9951690292, and size_z = 58.8759282303, while the 
grid for Pseudomonas aeruginosa was set to center_x 
= 47.9912699312, center_y = 38.6282164717, center_z 
= 30.4668261785, size_x = 96.3490410625, size_y = 
84.4136676486, and size_z = 103.798747643. Discovery 
studio 2020 client was used to sort out the most profi-
cient docked ligand conformations and examine the bond 
lengths and binding interactions. Azithromycin, Doxycy-
cline, Levofloxacin, Fluoroquinolone, Chloroquine, Rito-
navir, Ruxolitinib, and Ampicillin (Table S1) were used as 
control drugs against SARS-CoV-2 virus main protease 
and Pseudomonas aeruginosa proteins, respectively.

Molecular dynamics simulations (MDS)
MDS is a thermodynamic-based procedure that aids 
in the investigation of dynamic changes encountered in 
protein-ligand complexes. To certify the integrity of the 
ligand-protein combination in our investigation, we used 
MDS to examine the best ligands screened in previous 
phases with their corresponding proteins. The molecu-
lar docking complexes were simulated using the NAMD 
2.13 Win64-multicore version [40], which included 
the Chemistry at HARvard Macromolecular Mechan-
ics (CHARMM 36) force field [41] and the TIP3P water 
model. Several co-time approaches were applied, with a 
2fs integration time step. The CHARMM-GUI web ser-
vice [42] was used to produce ligand topology and param-
eter files, produce psf files of protein-ligand complexes, 
water box, and neutralize the system with potassium (K+) 
and chloride (Cl-) ions. The simulation/production (NPT) 
ran for 1 ns with 5000 steps of minimization (NVT). The 
temperature was kept constant at 303 K using a Langevin 
thermostat. The system’s perimeter was surrounded by 

http://www.ncbi.nlm.nih.gov
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periodic boundary conditions. Visual molecular dynam-
ics (VMD) [43] was utilized for the visualization of the 
complex.

Results
In the current study, about 1500 descriptors from PaDeL 
v2.20 using DFT (B3LYP/6-31G+(d,p)) were computed. 
Descriptors compete for space in the 25 compounds 
studied; on these descriptors, a genetic approximation-
multiple linear regression (GA-MLR) was employed. As 
a result, all descriptors with a low correlation coefficient 
value concerning the dependent variable were first dis-
carded. Also, descriptors with a correlation coefficient 
larger than 0.95 are eliminated from our data matrix to 
reduce ambiguity. The GA analysis selects the remaining 
descriptors, which are then employed in the creation of 
MLR models. QSARINS software v2.2.4 [44, 45] was used 
to divide the entire dataset into training and test sets at 
random. From the training set, the GA-MLR model with 
the highest coefficients of determination and explained 
variance in “leave one out” cross-validation prediction, 
and reasonable ability to predict MIC50 values of test 
set chemicals was chosen. The extended QSAR model is 
given in the equation below:

PMIC50 =  ‐ 7.3643(ATSC1s) + 0.0274  (TDB9s) ‐ 1.03
99 Model 1

The more important the regression model, the lower 
the p-value (Table 1), and all of the descriptors’ p-val-
ues were less than 0.05, indicating that they were sta-
tistically significant at the 95% level. Edache et al. [46] 
stipulated that the descriptors developed in a QSAR 
model should not be inter-correlated with one another. 
If descriptors are heavily connected among themselves, 
the model will be highly unstable. As a result, the 
developed model is statistically insignificant if the VIF 
is developed to evaluate descriptor inter-correlation. 
The VIF values of both descriptors in this model are 
1.23 which are less than the threshold value of 10 [47]. 
Table 1 shows the parameters utilized in the final model 
have relatively low inter-correlation based on VIF anal-
ysis. The mean effect (MF) value was calculated for 
each descriptor to determine its relative importance 

and contribution to the model. ATSC1c is a molecular 
descriptor based on Centred Broto-Moreau autocor-
relation with lag 1/I-state weighting. The descriptor 
is related to pMIC50 in a good way. It is assumed that 
increasing the ATSC1c descriptor by 76% boosts the 
bioactivity of drugs or anti-Pseudomonas aeruginosa 
activity. The final descriptor is TDB9s, which stands 
for 3D topological distance-based autocorrelation 
- lag 9/weighted by I-state. A 24% rise in the value of 
this descriptor increases the inhibitory activity of a 
compound.

Internal and external cross-validation was used to 
assess the model’s predictive potential. The model’s 
results, as well as their regression statistics, are pre-
sented in Table S2 and S3. Fig. S1 and S2 present the 
plots of experimental activity versus predicted activity 
for the training set and the test set compounds, cal-
culated using model 1. Fitting’s criteria, internal vali-
dation criteria, and external validation criteria values 
for the model were judged according to the accept-
able threshold [48–50]. Furthermore, the residual for 
the predicted pMIC50 values for both the training and 
test sets are plotted against the experimental pMIC50 
values in Fig. S3 and S4. The model did not show any 
proportional or systematic inaccuracy since the prop-
agation of residuals on both sides of zero is random 
(Fig. S3). The residuals calculated using prediction by 
leave-one-out (LOO) (Fig. S4) confirm the claim [51]. 
Each component’s leverage results can be computed 
and plotted against standardized residuals, allowing 
for graphical spotting of outliers and influential com-
pounds in a model. The hat matrix (H’s) diagonal ele-
ments indicate the molecules’ leverages, which may be 
computed using the formula below:

where X is the training set matrix and XT denotes the 
transpose of X.

Fig. S5 and S6 show the applicability zone as a 
squared region defined by a 2.5 bound for residuals and 

(1)H = X X
T
X

−1

X
T

Table 1  Statistical features for GA-MLR models with relevant descriptors

Variable Coeff. Description Std. coeff. Std. err. (+/−) Co. int. 95% p-value VIF MF

Intercept −1.0399 0.2891 0.6161 0.0024

ATSC1c −7.3643 Centered Broto-Moreau 
autocorrelation - lag 1/
weighted by I-state

−0.6614 1.0755 2.2923 0.0000 1.23 0.760

TDB9s 0.0274 3D topological distance-
based autocorrelation - lag 
9/weighted by I-state

0.4866 0.0054 0.0116 0.0001 1.23 0.240
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leverage values or warning leverage (h∗). This h∗ is the 
threshold value for X computed as a parameter for pre-
diction for a certain model and it is stated as follows:

where p signifies the number of model parameters and n 
constitutes the number of compounds [29]. Fig. S5 shows 
that the test set’s compound 15, a response outlier and 
compound 16, a structurally influential outlier is out-
side of this square area. While in Fig. S6 using prediction 
by leave-one-out (LOO), compounds 15 and 20 of the 
training and test set with standardized residuals exceed-
ing 2.5 standard deviation units are response outliers. A 
structurally influential outlier is compound 16 from the 
test set, which is not within the cut-off value of h* = 0.5. 

(2)h
∗
= 3(P + 1)/n

Fig. 1  In homology modeling, multiple sequence alignment was used. A The crystal structure of COVID-19 main protease in complex with 
carmofur was named qseq. B Predicted structure in general with chain A, 3C-like proteinase (severe acute respiratory syndrome coronavirus 2)

Table 2  The models and DOPE score generated for severe acute 
respiratory syndrome coronavirus 2

Filename molpdf DOPE score GA341 score

qseq.B99990001.pdb 1550.75635 −36285.00000 1.00000

qseq.B99990002.pdb 1594.63806 −36061.37891 1.00000

qseq.B99990003.pdb 1698.69629 −36243.19531 1.00000

qseq.B99990004.pdb 1557.67419 −36204.93359 1.00000

qseq.B99990005.pdb 1516.13452 −36275.48828 1.00000
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Surprisingly, one of the training sets compounds and two 
of the validation compounds both had leveraged greater 
than the threshold value and low residuals. As previ-
ously established by Jaworska and coworker [52] present, 
compounds with hat matrix (H’s) greater than h* allevi-
ate the model and make it predictive for new compounds 
that differ structurally from the training set [53]. This is 
only true when the training compound residuals are low. 
To ensure that all molecules from the estimate set were 
within the model domain, we used the Insubria graph 
[54]. The leverages for prediction set vs predicted values 
are plotted in the graph (Fig. S7). Based on molecular 
similarity to the training set compounds (leverage value) 
and the predicted value of pMIC50, we identified the 
model’s reliable prediction zone with this figure. We dis-
covered that 50% of the molecules in the test set fit into 
the model’s applicability zone. Compounds 12, 16, and 18 
were discovered to be beyond the zone. To ensure model 
quality, the Y-scrambling process was used to confirm the 
absence of chance correlations in the initial GFA-MLR 
model. As projected, Fig.  S8-S10 shows a satisfactory 
model was obtained.

Homology modeling
Homology modeling is typically used to create pro-
tein models and follows a set of well-defined and widely 
acknowledged procedures [55]. During the homology 
modeling phase, we aim for an experimentally deter-
mined structure with the COVID-19 virus main protease 
and RNA polymerase-binding transcription factor DksA 
(plasmid) that has a high “sequence identity.” Chain A, 
3C-like proteinase (severe acute respiratory syndrome 

coronavirus 2) target and template PDB I.D: 5R7Y pro-
tein sequences were aligned as indicated in Fig. 1A. The 
homology model of COVID-19 primary protease in asso-
ciation with carmofur was built using crystal structures 
of chain A, 3C-like proteinase (PDB: 5R7Y) as a template, 
and then modified by loop modeling. Figure 1B shows an 
overview of the aligned template and target sequence’s 
projected 3D structure with the alignment calculated 
using PyMOL molecular viewer yielded an RMSD value 
of 0.169.

In this investigation, the Discrete Optimized Pro-
tein Energy (DOPE) score [56], which is included in the 
MODELLER package and is extensively used to assess 
the quality of 3D models. The DOPE score values for the 
SARS-CoV-2 models are presented in Table  2. Models 
with a lower DOPE score and high molpdf values were 
regarded as structurally sound and reliable in terms of 
energy values. The model with a DOPE score of −36285.0 
and a molpdf value of 1550.75635 (model 1) was chosen 
in the case of the COVID-19 virus. The model and tem-
plates were superimposed according to the DOPE score 
profiles as presented in Fig.  2. The long active site loop 
between residues 10–50, 100–120, and 280–310, as well 
as the long helices at the C-terminal and N-terminal ends 
of the target sequence, has relatively high energy, accord-
ing to the plotted DOPE score profile. This lengthy loop 
interaction with the region makes up the active sites.

Different techniques, such as PROCHECK (Ramachan-
dran plot), PROVE, ERRAT2, and VERIFY 3D, were used 
to assess the 3D model’s structural integrity. The mod-
eled protein’s Ramachandran plot (Fig.  3A, B) shows 
that 93.3% (250 aa) of the total residues are in the most 

Fig. 2  The model profile was superimposed over the template profile
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favored regions and 4.9% (13 aa) are in additional allowed 
regions, and 0.8% (2 aa) are in the generously allowed 
regions, indicating a high-quality model. The modeled 
protein’s Verify3D plot (Fig.  3C) was obtained, and it 
showed PASS. The ERRAT2 overall quality factor for the 
COVID-19 model is around 88.26% (Fig. S11A).

The overlapping of the structure of transcription fac-
tor DksA2 from Pseudomonas aeruginosa and RNA 
polymerase-binding transcription factor DksA mod-
els shows great similarity, possibly due to the homology 
modeling procedure (Fig.  4A). Ten (10) PDB structures 
were generated, using MODELLER 10.1, and the best 

receptor model was chosen based on the DOPE assess-
ment method as presented in Table 3. Figure 4 shows an 
overview of the aligned template and target sequence’s 
projected 3D structure with the alignment calculated 
using PyMOL yielded an RMS value of 0.288. The model 
and templates were superimposed according to the 
DOPE score profiles as shown in Fig. 5. To evaluate the 
reliability of RNA polymerase-binding transcription fac-
tor DksA models built for docking purposes, we used a 
Ramachandran plot. These methods identify the Psi/Phi 
angle distribution in the 3D model within the allowed 
or disallowed regions. Ramachandran plot (Fig.  6) of 

Fig. 3  Validation of structure using A Ramachandran plot, B Ramachandran plot statistics of the homology modeled SARS-CoV-2 virus main 
protease, and C Verify3D for structure validation
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the modeled protein represents 94.6% (122 aa) of the 
total residues in the most favored regions, 3.1% (4 aa) 
in additionally allowed regions, residues in generously 
allowed regions is 1.6% (2 aa), and 0.8% (1 aa) residues in 

disallowed regions, indicating a good quality model. The 
modeled protein’s Verify 3D plot (Fig. 6C) was obtained, 
and it showed PASS. The ERRAT2 overall quality factor 
for the RNA polymerase-binding transcription factor 
DksA model is around 91.667% (Fig. S11B).

Molecular docking simulations
The selected configurations from the docking result are 
required in molecular docking simulation to determine 
the theoretical correctness of the produced complex 
structure between ligand and receptor. The active site 
of the modeled SARS-CoV-2 proteinase and modeled 
RNA polymerase-binding transcription factor DksA was 
docked by all 25 studied compounds and 8 controls or 
tested drugs. Within the defined active site, the docking 
program generates several poses with varied placements. 
The binding affinity score was used to determine the final 
ranking of the ligand docking postures. The binding affin-
ity score of all the studied compounds and the control 

Fig. 4  Alignment of RNA polymerase-binding transcription factor DksA (plasmid) amino acid sequences with the crystal structure of transcription 
factor DksA2 from Pseudomonas aeruginosa (PDB: 4IJJ)

Table 3  The summary of successfully predicted models for 
Pseudomonas aeruginosa 

Filename molpdf DOPE score GA341 score

qseq.B99990001.pdb 530.59882 −12190.35352 1.00000

qseq.B99990002.pdb 676.84918 −11866.63574 1.00000

qseq.B99990003.pdb 560.30042 −12064.89746 1.00000

qseq.B99990004.pdb 554.58264 −12033.17285 1.00000

qseq.B99990005.pdb 574.89307 −12037.96191 1.00000

qseq.B99990006.pdb 767.39117 −11957.61328 1.00000

qseq.B99990007.pdb 506.20578 −12191.88086 1.00000

qseq.B99990008.pdb 576.82599 −12180.59766 1.00000

qseq.B99990009.pdb 561.56323 −11841.31934 1.00000

qseq.B99990010.pdb 559.25763 −12143.47461 1.00000
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drugs are presented in Table S4. The binding poses of the 
best ligand and standards with the lowest binding affinity 
are depicted in 3D and 2D diagrams in Fig. 7. The ligand 
number 18 has the highest binding affinity against SARS-
CoV-2 virus main protease, at −8.7 kcal/mol, followed by 
the control (Ritonavir) at −8.4 kcal/mol. As illustrated in 
Fig.  7A, compound 18 with the highest binding affinity 
formed hydrogen bond interactions with Asp 295 (4.30 
Å), Gln299 (4.15 Å), Arg4 (7.70 Å), Met6 (3.93 Å), and 
(5.52 Å), respectively. It also forms hydrophobic contacts 
with Pro9 (5.03 Å), Arg298 (5.93 Å), and Phe8 (4.43 Å), 
as well as electrostatic interactions with Phe8 (5.24 Å), 
Asp295 (4.51 Å), and (4.32 Å). Ritonavir formed vari-
ous types of interactions between amino acids and vari-
ous groups of atoms attached to the control. Ile152 (4.73 
Å) formed conventional hydrogen bond interactions 
with the -NH group, Gln299 (5.61 Å) formed carbon-
hydrogen bond interactions with the -CH2N- group, and 
Lys12 (4.73 Å) formed carbon-hydrogen bond interac-
tions with the -CH2N- group as illustrated in Fig.  7B, a 
pi-donor hydrogen bond interaction with the terminal 
benzene ring was also created. Against modeled RNA 
polymerase-binding transcription factor DksA model 
protein, Doxycycline showed better binding affinity than 
ligand numbers 7, 12, and 15 (Table S4). Doxycycline has 
the maximum negative binding affinity of −7.2 kcal/mol, 
followed by Ritonavir with −6.7 kcal/mol. Compounds 7, 
12, and 15 have a better binding affinity (−6.5 kcal/mol) 
than the rest of the studied compounds. From (Fig. 7C–
E), compound 7 forms two conventional hydrogen bond 
interactions with the active site residues Pro109 (4.24 Å) 

and (5.58 Å), it also forms one unfavorable donor-donor 
interaction with Asp126 (Fig.  7C). Compound 12 forms 
five conventional hydrogen bonds and two hydrophobic 
interactions as presented in Fig. 7D. While compound 15 
(Fig.  7E) also have 5 conventional hydrogen bonds with 
Ser21 (2.67 Å), Asp18 (4.23 Å), Tyr19 (5.06 Å), Ser17 
(5.27 Å), and Tyr19 (5.44 Å). A carbon-hydrogen bond 
with Asp18 (4.32 Å) and two hydrophobic interactions 
with Pro109 (5.37 Å) and Tyr19 (4.8 Å), respectively. 
Lastly, the control drugs (Doxycycline) have two conven-
tional hydrogen bonds with Ile125 (4.11 Å) and Gly111 
(4.17 Å) and two unfavorable donor-donor interactions 
with Asp126 and Lys113. The unfavorable interactions 
found in compound 7 and Doxycycline disqualified them 
for further analysis. Compound 15 (Fig.  7E) has more 
hydrogen bonds than compound 12; hence, compound 
15 was used for molecular dynamics simulations.

SwissADME (http://​www.​swiss​adme.​ch/) was 
employed to estimate the drug-likeness of our inhibi-
tors, including their ADME inside the body [57]. The 
SwissADME program’s Egan BOILED-Egg method 
was utilized to determine the inhibitors’ absorption in 
the intestinal system and the brain. The BOILED-Egg 
(Brain Or IntestinaL EstimateD permeation predictive 
model), also known as the Egan egg, provides a thresh-
old (WLOGP ≤ 5.88 and TPSA ≤ 131.6) as well as a 
well-defined graphic illustration of how far a chemical 
structure deviates from the ideal for optimal absorp-
tion [58]. In Fig. 8, the molecules in the white part of this 
2D graphical representation are predicted to be quietly 
absorbed by the gastrointestinal (GI) tract, whereas the 

Fig. 5  DOPE score profiles for the query sequence (qseq) and templates of PDB: 4IJJ

http://www.swissadme.ch/
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yolk area represents chemicals that can passively cross 
the blood-brain barrier (BBB). None of the chemicals are 
absorbed by the brain, as seen in the graph. The gastroin-
testinal absorption of all inhibitors was within tolerable 
limits (WLOGP ≤ 5.88 and TPSA ≤ 131.6) (Fig. 8). The 
blue dots (compound 5) indicate molecules that P-glyco-
protein is predicted to effluate from the central nervous 
system (CNS), whereas the remaining compounds (red 
dots) indicate compounds that P-glycoprotein is pre-
dicted not to effluate from the CNS.

Figure 9 depicts the bioavailability radar of the com-
pounds for six physicochemical characteristics. The 

bioavailability radars of compounds 15 (Fig.  9A) and 
18 (Fig. 9B) demonstrated a quick assessment of drug-
likeness. The bioavailability radar takes into account 
the following six physicochemical characteristics: (1) 
lipophilicity (XLOGP3 between 0.7 and +5.0), (2) 
size (molecular weight between 150 and 500 g/mol), 
(3) polarity (total polar surface area between 20 and 
1302), (4) solubility (log S less than 6), (5) saturation 
(fraction Csp3 less than 0.25), and (6) flexibility (the 
number of rotatable bonds not more than 9). The pink 
area reflects the optimal range of these traits [59], 
while the red line shows each compound’s properties. 

Fig. 6  A Ramachandran plot, B Ramachandran plot statistics of the homology modeled RNA polymerase-binding transcription factor DksA 
(plasmid), and C Verify3D for structure validation
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In Fig.  9, the in-saturation of both compounds is vis-
ible, whereas the other characteristics are inside the 
pink area. As a result, we can conclude that these 
chemicals are expected to be bioavailable when taken 
orally.

The MD simulations of the docked complexes
The MDS was executed to assess the constancy of 
the docked complexes. The complex stability was 
investigated by calculating the backbone using root-
mean-square deviation (RMSD), root means square 
fluctuation (RMSF), and solvent accessible surface 
area (SASA). The RMSD of the Cα atoms in the 
docked complexes was assessed to see the structural 
deviations all over the simulation trajectory. The 
complexes reach their stable state after 1-ns which 
showed structural stability. The RMSD value of the 

SARS-CoV-2 protein complex is 2.76 Å and that of 
the Pseudomonas aeruginosa protein complex is 
3.47 Å. As shown in Fig. 10A, the fluctuation of the 
SARS-CoV-2 protein complex was within accept-
able range with RMSD less than 3 Å indicating the 
stability of the protein complex conformation. The 
fluctuation of the Pseudomonas aeruginosa protein 
complex (Fig.  11A) exhibited an increasingly RMSD 
value toward the end of the simulation. To examine 
the local differences of protein flexibility, the RMSF 
results were calculated by taking the average of all 
backbone residues of atoms (Figs.  10 and 11B). The 
changes shown below play a significant role in pro-
tein complex flexibility, influencing protein-ligand 
activity and stability. The high RMSF value dem-
onstrates more flexibility, with a maximum level of 
fluctuation in the residue positions of 400 ps at 1 

Fig. 7  Docking interaction of COVID-19 virus main protease and RNA polymerase-binding transcription factor DksA with ligands. A Compound 
18, B Ritonavir, C compound 7, D compound 12, E compound 15, and F Doxycycline. The 2D diagram shows the interactions of the amino acid 
residues in the binding pores. Colors of residues indicate the types of interactions and bond distances (Å) are shown on each interaction (color 
figure online)
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(Fig.  10B) and 200 ps at 1.1 (Fig.  11B), but the low 
RMSF value exhibits extremely limited movements. 
The solvent-accessible surface area of the simu-
lated complexes was also analyzed. These simulation 
descriptors correlate with the surface volume of the 
complexes where a higher SASA profile indicates 
the expansion in the surface area. The SASA trend 

in the simulated complexes was higher, indicating an 
increase in surface volume. These simulated com-
plexes, on the other hand, did not show a high level 
of SASA deviations, indicating that no major modifi-
cations to the protein’s surface area were occurring. 
The SASA for both complexes was calculated using 
surface racer v5 [60]. The SASA for the SARS-Cov-2 

Fig. 8  The Egan egg method was used to evaluate the ligands that were studied (http://​www.​swiss​adme.​ch/)

Fig. 9  The bioavailability radar of A compound 15 B compound 18 (http://​www.​swiss​adme.​ch/)

http://www.swissadme.ch/
http://www.swissadme.ch/
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protein complex (Fig.  10C) has a total accessible 
surface area of 16548.26 Å2, polar accessible area of 
9668.47 Å2, and non-polar accessible surface area of 
6879.79 Å2, while the Pseudomonas aeruginosa pro-
tein complex (11C) has a total accessible surface area 
of 11688.04 Å2, polar accessible area of 6411.80 Å2, 
and non-polar accessible surface area of 5276.24Å2 
(Table 4).

MD simulation was applied to confirm the reliability 
of each ligand into the active site of the enzymes. The 
fresh identified hit compounds formed stable hydro-
gen bond interactions with the modeled active residues, 
e.g., Glu299 and Met6 for SARS-CoV-2 main protease 
(Fig. 10D) and Tyr19 for RNA polymerase-binding tran-
scription factor DksA (Fig. 11D). The MD simulation also 
supported that each hit compound formed hydrophobic 
interactions with residues occupying the active site of 
SARS-CoV-2 main protease and RNA polymerase-bind-
ing transcription factor. Eventually, we proposed two-hit 
compounds as key practical weapons for the COVID-19 
main protease and RNA polymerase therapeutics against 
SARS-CoV-2 and Pseudomonas aeruginosa inhibition, 
respectively.

Conclusion
The created 2D-QSAR models’ regression statistics 
demonstrated that they were statistically significant. 
Furthermore, during fitting’s criteria, internal, and 
external cross-validation trials, relatively low residu-
als were acquired, showing that the constructed mod-
els were predictive. Their satisfactory QL2OO, R2, 
Q2F1, Q2F2, Q2F3, and CCC values backed up this 
claim. In docking simulation, compounds 15 and 18 
were predicted as the best RNA polymerase-binding 
transcription factor and SARS-CoV-2 virus main pro-
tease inhibitor, respectively (with maximum binding 
affinity) to be employed as a possible cure orally active 
drug (based on BOILED-egg and bioavailability radar 
approach). Molecular dynamic simulations analyze 
admitting RMSD, RMSF, and SASA analysis affirmed 
their binding constancy with respective modeled pro-
teins throughout the simulation chronology. Our pre-
sent exploit can be generative in determining new 
remedies against SARS-CoV-2 virus main protease and 
Pseudomonas aeruginosa, having said that general test 
(in vitro and in  vivo) studies are required to test our 
theoretical analysis.

A B

C D

Fig. 10  MD simulation study of COVID-19 main protease in complex with carmofur
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A B

C D

Fig. 11  MD simulation study of the RNA polymerase-binding transcription factor DksA (plasmid)

Table 4  The SASA results for the SARS-CoV-2 and Pseudomonas aeruginosa protein complex

The surface area of SARS-CoV-2 The surface area of Pseudomonas aeruginosa

Number of non-HOH, non-H atoms = 2703 Number of non-HOH, non-H atoms = 1213

Probe radius = 1.40 Probe radius=1.40

TOTAL ASA = 16548.26 TOTAL ASA = 11688.04

TOTAL MSA = 0.00 TOTAL MSA = 0.00

Polar ASA = 9668.47 Polar ASA = 6411.80

Non-polar ASA = 6879.79 Non-polar ASA = 5276.24

Polar MSA = 0.00 Polar MSA = 0.00

Non-polar MSA = 0.00 Non-polar MSA = 0.00

Total backbone ASA = 3209.50 Total backbone ASA = 1390.08

Total backbone MSA = 0.00 Total backbone MSA = 0.00

Polar backbone ASA = 2089.27 Polar backbone ASA = 859.84

Non-polar backbone ASA = 1120.23 Non-polar backbone ASA = 530.23

Polar backbone MSA = 0.00 Polar backbone MSA = 0.00

Non-polar backbone MSA = 0.00 Non-polar backbone MSA = 0.00

Polar side chain ASA = 7579.21 Polar side chain ASA = 5551.96

Non-polar side chain ASA = 5759.55 Non-polar side chain ASA = 4746.01

Polar side chain MSA = 0.00 Polar side chain MSA = 0.00

Non-polar side chain MSA = 0.00 Non-polar side chain MSA = 0.00

+charge ASA = 1234.27 −charge ASA = 1092.32 +charge ASA = 1252.44 −charge ASA = 1540.53

+charge MSA = 0.00 −charge MSA = 0.00 +charge MSA = 0.00 −charge MSA = 0.00

Structure contains 15 cavities Structure contains 2 cavities
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