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Abstract 

Background:  The novel coronavirus (SARS-CoV-2) caused lethal infections worldwide during an unprecedented pan‑
demic. Identification of the candidate viral epitopes is the first step in the design of vaccines against the viral infection. 
Several immunoinformatic approaches were employed to identify the SARS-CoV-2 epitopes that bind specifically 
with the major histocompatibility molecules class I (MHC-I). We utilized immunoinformatic tools to analyze the whole 
viral protein sequences, to identify the SARS-CoV-2 epitopes responsible for binding to the most frequent human 
leukocyte antigen (HLA) alleles in the Egyptian population. These alleles were also found with high frequency in other 
populations worldwide.

Results:  Molecular docking approach showed that using the co-crystallized MHC-I and T cell receptor (TCR) instead 
of using MHC-I structure only, significantly enhanced docking scores and stabilized the conformation, as well as the 
binding affinity of the identified SARS-CoV-2 epitopes. Our approach directly predicts 7 potential vaccine subunits 
from the available SARS-CoV-2 spike and ORF1ab protein sequence. This prediction has been confirmed by published 
experimentally validated and in silico predicted spike epitope. On the other hand, we predicted novel epitopes 
(RDLPQGFSA and FCLEASFNY) showing high docking scores and antigenicity response with both MHC-I and TCR. 
Moreover, antigenicity, allergenicity, toxicity, and physicochemical properties of the predicted SARS-CoV-2 epitopes 
were evaluated via state-of-the-art bioinformatic approaches, showing high efficacy of the proposed epitopes as a 
vaccine candidate.

Conclusion:  Our predicted SARS-CoV-2 epitopes can facilitate vaccine development to enhance the immunogenic‑
ity against SARS-CoV-2 and provide supportive data for further experimental validation. Our proposed molecular 
docking approach of exploiting both MHC and TCR structures can be used to identify potential epitopes for most 
microbial pathogens, provided the crystal structure of MHC co-crystallized with TCR.
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Background
A virus that causes infectious pneumonia broke out at 
the end of 2019 and rapidly spread worldwide [1]. As it 
was phylogenetically similar to severe acute respiratory 
syndrome coronavirus (SARS-CoV) [2], the pathogen 
has been subsequently identified as a novel coronavirus, 

SARS-CoV-2 [3], and the associated disease was termed 
coronavirus disease-19 (COVID-19) [4, 5]. SARS-CoV-2 
is more distantly linked to the Middle East respiratory 
syndrome coronavirus (MERS-CoV) [6], and the T cell 
responses have been found to give long-term immunity 
against viral infections [7]. Immune responses by T cells 
significantly contributed to protection against infection 
by SARS-CoV, and the pathological damage inflicted by 
MERS-CoV [8]. The cellular T lymphocyte-mediated 
responses have been shown to provide the most potent 
immunity against the structural proteins of SARS-CoV 
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in patients during convalescence [9, 10], as cytotoxic T 
lymphocytes (CTLs) are known to induce the strongest 
response to viral infections [11]. Recent studies showed 
that the development of an epitope-based vaccine can 
be achieved through recognizing the viral peptides pre-
sented by human leukocyte antigens (HLAs) especially 
peptides of Spike and N proteins [12–14]. During the 
immune response against the virus, after antigen pro-
cessing into epitopes through the antigen-presenting 
cells (APCs), these peptide fragments associate with 
MHC molecules in a form that is specifically identified by 
the T cell receptor (TCR).

Furthermore, T cells detect viral antigens presented 
by MHC class I (the immunogenic peptide–MHC class 
I complexes), which will enhance CD8+ T cell cytokine 
production and cytotoxic activity (active effector CTLs) 
[15]. The alpha-3 domain and beta-2 microglobulin 
(β2m) of the MHC-I molecule engage with the binding 
site of the TCR, which consists of two domains arising 
from a single heavy chain (HC). The two domains com-
bine to form a shallow curved sheet as a base, with the 
two helices on top, to accommodate a peptide chain 
“epitope” in-between [16]. The establishment of a set of 
conserved hydrogen bonds (H bonds) between the side 
chains of the MHC molecule and the backbone of the 
peptide is required for binding between the two α-helices 
and the epitope. The geometry, the hydrophobicity of the 
binding site, and the charge distribution together deter-
mine the type of interactions of peptides with the MHC 
molecule. Reliable epitope prediction can be achieved 
through precise prediction of the affinity of the MHC-
antigen interactions for individual allotropes [17, 18].

The presentation of a stable immunogenic peptide–
MHC class I (MHC) complex is dependent on the fitting 
between the peptide and the MHC groove, but it is not 
the only factor. The other factors affecting the formation 
of MHC complex include protease activity, the accessibil-
ity of chaperones, or the antigen. The binding groove of 
MHC class I is closed on both ends by conserved tyrosine 
residues, limiting the size of peptides that bind to MHC 
molecules to roughly 8–10 residues at their C-terminal 
end docking into the F-pocket [19, 20].

The main objective of our study is to predict the most 
antigenic SARS-CoV-2 epitopes that are compatible with 
HLA haplotypes of the Egyptian population. We chose 
Spike and ORF1ab proteins, as they have a robust scores 
in several prediction tools including binding predic-
tion with MHC, antigenicity response, and high dock-
ing scores with both MHC and TCR. These scores offer 
significant stability of the provided epitopes, whereas 
epitope prediction scores measure the affinity between 
the proposed epitopes and MHC molecules, while anti-
genicity response measures the ability of the proposed 

epitopes to elicit an immune response. The scores thus 
express the stimulation of the immune response against 
the proposed epitopes. Moreover, molecular docking 
scores evaluate the most conformational stability of our 
proposed epitopes with both MHC molecules and T cell 
receptors. The methods have been selected for their high 
accuracy in predicting binding conformation and are 
more fitting with our approach for protein-protein inter-
action. For example, HDock provides a robust homology 
modeling strategy for molecular docking via exploit-
ing the FASTA format of the input data instead of the 
3D structure prediction molecules. This improves the 
molecular docking results compared to feeding the 3D 
structures directly to the docking software. In this case, 
the software implements different conformation of the 
predicted epitopes according to their fitting in the bind-
ing pocket of both MHC and TCR. Additionally, Net-
MHCpan4.1 server [21] has a high accuracy score as an 
epitope prediction platform. The Immune Epitope Data-
base (IEDB) provides a weekly benchmarking with other 
epitope prediction tools, while NetMHCpan4.1 server 
has the highest prediction score compared to other tools.

For a more reliable characterization of the epitopes, 
we used additional tools. Vaxijen [22–24] is a prediction 
algorithm tool that predicts the antigenic epitopes from 
three different sources (tumors, bacteria, and virus). The 
prediction is based on alignment-independent approach, 
which predicts the antigenicity response relying on the 
physicochemical properties of the peptides. PEP-FOLD3 
[25–27] is a de novo strategy exploiting a linear peptide 
of amino acid sequence to predict the peptide structure. 
The structure prediction is relying on a hidden Markov 
model approach, which has the possibility of creat-
ing candidate confirmation by folding the peptides on 
a set patch of proteins. ToxinPred server [28] was used 
for toxicity prediction. The server is an in silico method 
using database of 1805 toxic peptides (≤35 residues). 
This method is developed to predict and design toxic/
non-toxic peptides. AllergenFP v.1.0. server [29] is a bio-
informatics tool for allergenicity prediction. This tool is 
based on a novel descriptor fingerprint approach, which 
could be applied for any classification problem in compu-
tational biology. Finally, ExPASy ProtParam Tool [30] is 
used for physicochemical properties prediction via com-
putation of various physical and chemical parameters for 
a given protein. The tool is able to predict the molecu-
lar weight, theoretical isoelectric point (pI), amino acid 
composition, atomic composition, extinction coefficient, 
estimated half-life, instability index, aliphatic index, and 
grand average of hydropathicity (GRAVY).

In this study, several SARS-CoV-2 epitopes have been 
identified using a whole viral protein sequence analysis, 
exploiting the most updated version of tools for epitope 
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prediction, antigenicity response, and molecular docking. 
These tools represented the most common and accurate 
platforms for epitope prediction analysis [21–24]. These 
proposed epitopes represent the most immunogenic 
peptides in SARS CoV-2 based on their strong dock-
ing affinity with both MHC and TCR. These proposed 
epitopes have been identified from Spike and ORF1ab 
proteins for their highest scores in MHC binding affin-
ity, immunogenicity, and molecular docking scores. Due 
to the genomic variations of the SARS-CoV-2 and HLA 
haplotypes across populations [31–36], SARS CoV-2 
epitopes were identified according to the most common 
HLA allele frequencies of the Egyptian population [37–
39]. Our proposed docking approach of exploiting the 
structures of both MHC and TCR in validating docking 
affinity of the proposed epitopes can be applied with any 
pathogenic protein, as long as the structure of MHC is 
co-crystallized with TCR.

Material and methods
Sequence retrieval and multiple sequence alignment
Genomic sequences of SARS-CoV-2 isolates Egyp-
tian strains [GISAID database [40] (accession ID: EPI_
ISL_9047802, EPI_ISL_9047803, EPI_ISL_9047804, 
EPI_ISL_9047805, EPI_ISL_430820, and EPI_
ISL_430819)] [41] were retrieved in FASTA format from 
GISAID, and a genomic sequence of SARS-CoV-2 isolate 
Chinese strain [GenBank database [42] (accession ID: 
NC_045512.2)] [43] was retrieved from GenBank. The 
viral genomes isolates Egyptian strains were translated 
into their amino acid sequences using EMBOSS Transeq 
(https://​www.​ebi.​ac.​uk/​Tools/​st/​emboss_​trans​eq), and 
multiple sequence alignment of amino acid sequences 
was implemented via ClustalW using Molecular Evolu-
tionary Genetics Analysis software “MegaX” [44, 45].

Identification of cytotoxic T cell epitopes and their 
antigenicity response
NetMHCpan4.1 server [21] was exploited to predict viral 
epitope binding to the most frequent HLA haplotypes 
in the Egyptian population (HLA-A*0101, HLA-A*0210 
HLA-B*03501, HLA-B*4101) [39]. Every SARS-CoV-2 
protein was provided to the platform, along with a 
threshold of 0.5% rank for strong binder and 2 for the 
weak binder. NetMHCpan4.1 uses artificial neural net-
works in their predictions, trained on many quantitative 
binding affinities in addition to mass-spectroscopy eluted 
ligands. The resulting epitopes were filtered to include 
only the strong binders with their corresponding HLA 
haplotypes. Then, antigenicity response was measured 
by Vaxijen [22–24] for every proposed epitope that was 
predicted previously. Vaxijen is implemented by using 
a threshold of 0.4 as a probable antigen. A threshold of 

0.4 was selected, as the best prediction threshold of the 
epitopes’ antigenicity response. Moreover, this score was 
previously reported to validate the antigenicity response 
of the proposed epitopes [46–48]. Only crystal structures 
of HLA-A*0201 and HLA-B*03501 were retrieved from 
the protein data bank [49–51] under accession ID: 5YXN 
and 4PRP, respectively.

Homology modeling
Homology modeling of the resulting probable epitopes 
was predicted using PEP-FOLD3 [25–27] provided the 
protein sequences in their FASTA format. Structures 
with the lowest coarse-grained energy according to PEP-
FOLD3 recommendations were selected for molecular 
docking with MHC-I crystal structures.

Toxicity and allergenic response
The toxicity and allergenic response of the proposed 
epitopes were predicted by ToxinPred server (http://​crdd.​
osdd.​net/​ragha​va/​toxin​pred/) [28] and AllergenFP v.1.0. 
servers (https://​ddg-​pharm​fac.​net/​Aller​genFP/​index.​
html) respectively. Physicochemical properties, includ-
ing hydropathicity, charge, half-life, instability index, pI 
(theoretical isoelectric point value), and molecule weight, 
were predicted by ExPASy ProtParam Tool [30].

Molecular docking
We adopted the updated version of the HDock server 
(http://​hdock.​phys.​hust.​edu.​cn/), which is currently 
exploited for protein docking based on two methods; 
template-based and template-free methods, both meth-
ods have been exploited to determine the most accu-
rate one in providing high docking scores with both 
MHC and TCR. We found that template-free method 
provides more robust docking scores than template-
based method. We provide both the crystal structures of 
MHC-I and TCR chains in PDB format, while the ligands 
are in their FASTA format. In the molecular docking, 
we substituted the crystallized epitopes bound between 
the groove of the MHC and TCR of 5YXN and 4PRP (as 
shown in brown and pink; Fig.  1a and b, respectively) 
with our putative SARS-CoV-2 epitopes. The PDB acces-
sion ID of MHC crystal structures (5YXN and 4PRP) 
have been used as input for HDock server along with 
their interacting chains, chain A for MHC and chains E 
and D for TCR.

The interaction of the candidate ligands with their 
receptors was visualized by PyMOL (https://​pymol.​
org/2/) to investigate the number of interacting bonds 
between the structures, as depicted in (Fig. 2).

https://www.ebi.ac.uk/Tools/st/emboss_transeq
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
https://ddg-pharmfac.net/AllergenFP/index.html
https://ddg-pharmfac.net/AllergenFP/index.html
http://hdock.phys.hust.edu.cn/
https://pymol.org/2/
https://pymol.org/2/
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Fig. 1  The crystal structures of 5YXN and 4PRP. a 5YXN MHC molecule on the right side and TCR chains on the left side. b 4PRP MHC molecule on 
the right side, and TCR chains are on the left side. (white arrows indicate the co-crystalized epitopes)

Fig. 2  Flow chart of the approach used in epitope prediction of SARS-CoV-2
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Results
Variations in SARS‑CoV‑2 sequences
A number of synonymous mutations between the 
genomic sequences of SARS-CoV-2 isolated in Wuhan 
and Egypt were detected. However, two non-synony-
mous mutations were identified in “Spike” and “ORF1ab” 
sequences of SARS-CoV-2 in Egypt. The first, presented 
in all Egyptian strains SARS-CoV-2 isolates, was a muta-
tion of aspartic acid (D) residue at position 7713 to gly-
cine (G) residue in S protein. The second, presented in 
only one Egyptian strain SARS-CoV-2 isolate was a muta-
tion of lysine (K) residue at position 2798, to arginine (R) 
in ORF1ab protein (Fig. 3).

Recognition of CD8+ T cell epitopes in SARS‑CoV‑2
Since Cytotoxic T-lymphocytes recognize certain 
epitopes attached to MHC-I in the infected cells, T cell 
epitopes have been identified in our study NetMHC-
pan4.1 server predicted 406 peptides from all viral pro-
teins, tested with the most common HLA haplotypes of 
the Egyptian population to evaluate their binding affinity 
with MHC-I and predict potential CTL epitopes.

Evaluation of antigenicity and allergenic response
The antigenicity was measured for every epitope by Vaxi-
jen to produce 201 peptides acting as probable antigens 
(Table 1 and Supplementary Table 1). The Vaxijen score 

for every epitope provides a robust antigenicity of the 
proposed epitopes. The allergenicity of the candidate 
epitopes has been measured by AllergenFP v.1.0. Server 
(allergenicity scores are listed in Supplementary Table 1). 
Low allergenic scores indicate that the proposed epitopes 
might not show any detrimental allergenic reaction.

Toxicity and physicochemical properties assessment
The toxicity and physicochemical properties of the pro-
posed epitopes were evaluated to validate their quality 
(Table 2). All of the seven epitope candidates were non-
toxic. RDLPQGFSA and NCYFPLQSY epitopes hydro-
philic nature and can interact easily with water [52]. The 
GEYSHVVAF epitope showed the longest half-life of all 
epitope candidates to be 30 h in vitro and >20 h in vivo. 
FCLEASFNY, TLGVLVPHV, and GEYSHVVAF epitopes 
showed instability index < 40, indicating the stable form 
of these candidates. The GEYSHVVAF epitope shows 
here the highest stability potential.

Molecular docking
Molecular docking can evaluate the binding affinity and 
interaction between the proposed epitope and the tar-
get receptor. We obtained several epitopes with high 
docking scores along the whole viral protein sequences. 
However, we noticed that the structural Spike and 

Fig. 3  Multiple sequence alignment of both a Spike and b ORF1ab proteins of SARS-CoV-2 in Wuhan and in Egypt

Table 1  The candidate SARS-CoV-2 epitopes for the Egyptian most frequent alleles of MHC class I molecules

Serial in 
Supplementary 
Table 1

Position HLA haplotype Epitope sequence 4PRP 5YXN Antigenicity 
response

Score Protein HLA crystal 
structure

12 214 HLA-B*35:01, HLA-A*02:01 RDLPQGFSA − 255.9 − 185.69 0.8947 0.286485 Spike 4PRP, 5YXN

28 269 HLA-B*35:01, HLA-A*02:01 YLQPRTFLL − 236.05 − 224.82 0.4532 0.972695 Spike 4PRP, 5YXN

25 691 HLA-A*02:01 SIIAYTMSL − 230.22 − 220.73 0.5234 0.575949 Spike 5YXN

7 2209 HLA-A*02:01 FCLEASFNY − 314.45 − 191.75 1.5042 0.411451 ORF1ab 5YXN

79 103 HLA-B*35:01, HLA-A*02:01 TLGVLVPHV − 295.42 − 211.69 0.5583 0.713924 ORF1ab 4PRP, 5YXN

241 3050 HLA-B*35:01 GEYSHVVAF − 293.81 − 213.74 0.6428 0.523635 ORF1ab 4PRP

14 487 HLA-B*35:01 NCYFPLQSY − 225 − 183.06 0.8743 0.558006 Spike 4PRP
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non-structural ORF1ab proteins have the highest 
docking scores among SARS-CoV-2 proteins (Supple-
mentary Table  1). Ten confirmations for their peptide 
epitope docking were produced (Supplementary file 
1), and top positioned conformations dependent on 
their docking scores and interactions with MHC-I and 
TCR residues were visualized to ensure proper binding 
(Figs. 4 and 5), where they showed the hydrogen bonds 
(H bonds) that stabilize the candidate epitopes with 
both MHC class 1 molecule and TCR chains. These H 
bonds and their bound amino acids along with their 

bond distances were represented in Table 3. Finally, we 
found that three of the most promising seven predicted 
epitopes were shared between both HLA-A 0201 and 
HLA-B 35:01 (Table 1).

Discussion
Vaccine development against viral infection is deter-
mined by finding the candidate immunogenic epitopes of 
the viral peptides. Our study aims to determine the puta-
tive immunogenic epitopes from the whole viral protein 
sequence of SARS-CoV-2, which possibly bind to both 

Table 2  Toxicity and physicochemical properties of the candidate epitopes

Epitopes Hydropathicity Half-life (Mammalian 
reticulocytes, in vitro)

Half-life (Yeast, 
Escherichia coli, 
in vivo)

Instability index Stability pI Mol. weight Toxicity

RDLPQGFSA − 0.656 1 h 2 min, 2 min 51.69 No 5.84 990.08 Non-toxin

YLQPRTFLL 0.289 2.8 h 10 min, 2 min 71.84 No 8.75 1150.39 Non-toxin

SIIAYTMSL 1.433 1.9 h >20 h, >10 h 48.28 No 5.24 998.20 Non-toxin

FCLEASFNY 0.511 1.1 h 3 min, 2 min 30.29 Yes 4.00 1093.22 Non-toxin

TLGVLVPHV 1.589 7.2 h >20 h, >10 h 30.29 Yes 6.40 934.15 Non-toxin

GEYSHVVAF 0.422 30 h >20 h, >10 h 0.51 Yes 5.24 1008.10 Non-toxin

NCYFPLQSY − 0.322 1.4 h 3 min, >10 h 112.13 No 5.52 1134.27 Non-toxin

Fig. 4  Molecular docking of Spike epitope (No. 14 in Table 1) with both 4prp MHC I molecule and TCR chains
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MHC-I molecule and cytotoxic T cells, as they present 
the first adaptive line of immune response against viral 
infection. Epitopes bind to the groove of MHC class I, 
which is expressed on all nucleated cells. This binding 
forms a stable conformation leading to antigen presen-
tation and activation of the adaptive immune response 
CD8+ CTLs, which play an indispensable role in com-
bating viral infection [15]. The binding between pep-
tide epitopes and both MHC and TCR is enhanced by 
the presence of several hydrogen bonds between them, 
as represented in Table  3 [53, 54]. Due to the polymor-
phic nature of MHC haplotypes, specific confirmation 
of peptides can bind with specific MHC molecules [15]. 
For these variabilities, we sought to predict the candidate 
epitopes from the whole SARS-CoV-2 viral proteins to 
precisely determine the best peptide conformation for 
binding with the corresponding HLA haplotypes of the 
highest frequency in the Egyptian population [39].

We made several trials for molecular docking by 
HDock to get the best docking scores, in which we tried 
both the template-free (FASTA format) and template-
based (PDB format) approaches of HDock. We tested 
both approaches by using the homology modeling 
structures of the candidate epitopes in their PDB for-
mat, which were obtained from the PEP-FOLD3 server, 
and the epitope protein sequences in FASTA format. 
We found that the template-free-based model provides 

higher docking scores than the template-based method. 
Moreover, by applying our docking approach in provid-
ing the alpha and beta chains of TCR, which were co-
crystallized with MHC-I molecules, the docking scores 
and the number of hydrogen bonds increased signifi-
cantly. This enhanced our analysis and presented a new 
docking approach by binding the query ligand to both 
TCR and HLA molecules that stabilize the binding and 
show a more confident docking conformation.

We located the most favorable vaccine candidates in 
the Spike and ORF1ab proteins. Similar to other corona-
viruses, the Spike protein is a trimeric class I transmem-
brane glycoprotein located on the surface of SARS-CoV-2 
[55]. SARS-CoV-2 Spike protein is involved in receptor 
recognition, cell attachment, and fusion, making it cru-
cial for viral entry and infectivity [56–61]. On the other 
hand, ORF1ab has been shown to have key roles in viral 
interaction with the innate immune response [62, 63], 
viral replication [64], and viral RNA synthesis and pro-
cessing [65, 66].

Our study proposed seven immunogenic epitopes, with 
no toxicity, and with a high antigenicity response that is 
compatible with their physiochemical properties. Some 
epitopes are novel and others were predicted in-silico or 
by experimental techniques [67–70]. The proposed dock-
ing approach could provide several antigenic epitopes that 
were confirmed by several methods experimentally and 

Fig. 5  Molecular docking of ORF1ab epitope (No. 79 in Table 1) with both 5yxn MHC I molecule and TCR chains
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computationally. CD8+ epitope (YLQPRTFLL) has been 
validated experimentally, which also shows similarity with 
MERS-CoV epitope for the same HLA haplotype [67, 68]. 
Another confirmation to our prediction is by re-prediction 
of other in-silico predicted MHC class I epitope (SIIAY-
TMSL) that also overlapped with another SARS-CoV-2 
MHC class II epitope for DRB1-04:01 and DRB1-07:01. 
Also, GEYSHVVAF, NCYFPLQSY, and TLGVLVPHV were 
previously predicted to different HLA haplotype binding 
[69, 70]. We however predicted the immunogenic poten-
tial of all epitopes by docking with both MHC-I and TCR 
chains. The data are in agreement with other studies that 
suggested some of these epitopes as potential targets for 
vaccine development [71–73]. Additionally, we have pre-
dicted other novel SARS-CoV-2 immunogenic epitopes. 
Experimental validation of these candidates is promising 
for both therapeutic applications and vaccine development.

The exploited HLA haplotypes represented the highest 
frequencies in the Egyptian population and also in world-
wide population (HLA-A*01:01 16.2%, HLA-A*02:01 
25.2%, HLA-B*35:01 6.5%) [70]. The predicted epitopes 

thus not only fit with the HLA haplotypes of the Egyptian 
population but can be also applied worldwide. Despite 
the highest docking scores and MHC binding affinity of 
the putative epitopes, in-vitro experimental validation 
or in vivo studies are required to confirm their immuno-
genicity against SARS-CoV-2.

Conclusion
We identified seven SARS-CoV-2 epitopes from Spike 
and ORF1ab proteins, according to the most common 
HLA allele frequencies of the Egyptian population. Some 
of these epitopes were previously validated in vitro and in 
silico and others are novel SARS-CoV-2 epitopes, char-
acterized by a high probability of eliciting an immune 
response and stable molecular interaction. This was indi-
cated by the high antigenicity, highest docking scores, and 
docking stability of these epitopes with both MHC class 
I and TCR chains that were stabilized by several hydro-
gen bonds. Importantly, our molecular docking approach 
is more feasible and useful when using the structure of 
MHC molecules co-crystallized with their TCR chains, 
and not only using the crystal structure of MHC mol-
ecules as followed in many recent studies. This molecu-
lar docking approach of utilizing both MHC and TCR 
structures for epitope prediction can be extended to most 
microbial infections. Experimental validation of these 
proposed epitopes should ultimately confirm their bind-
ing and interaction with specific TCRs, immunogenic 
response, and therapeutic potential against SARS-CoV-2.
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VAL [ARG (3.1)]
GLY [TYR (3.0)]

HIS [TYR (3.2)]

25 THR [TRP (3.4)]
THR [LYS (3.2)]
ALA [ARG (3.3)]
ILE [TYR (2.7)]
ILE [HIS (3.1)]

THR [GLY (2.5)]
TYR [TYR (2.3)]
THR [ASP (3.3)]

28 TYR [GLU (3.1)]
SER [TYR (3.3)]
ASN [TYR (2.3)]
THR [TYR (3.2)]

TYR [ARG (3.1)]
TYR [ASN (3.0)]

12 GLY [LYS (3.4)]
GLY [SER (2.3)]
GLN [TRP (2.9)]
GLN [THR (2.8)]

ARG [ALA (2.8)]
ARG [SER (2.4)]
ASP [SER (2.7)]

https://doi.org/10.1186/s43141-022-00344-1
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