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Abstract 

Background:  The marine environment hosts a wide variety of species that have evolved to live in harsh and chal-
lenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically 
useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their 
resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological appli-
cations. Encouraged by the extensive and richness of the marine environment, marine organisms’ role in developing 
new therapeutic benefits is heading as an arable field.

Main body of the abstract:  There is currently much interest in biologically active compounds derived from natural 
resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. 
Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine inverte-
brates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, 
such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabo-
lites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs 
or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health 
effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects 
of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death 
inhibition.

Conclusion:  The application of marine-derived bioactive compounds has gained importance because of their thera-
peutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivi-
ties, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review 
focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights 
their possible contribution to humanity.
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Background
Natural products have been used for the treatment of 
human ailments since the beginning of mankind. Ocean 
remains as one such treasure for natural products. The 

oceans cover more than three-quarters of the earth’s sur-
face and harbor most of the planet’s diversity. But the 
marine biotope, which is still an unexplored area, can 
provide us with rich novel natural products. For dec-
ades, microbial natural products have been the reservoir 
for drug discovery, yet the microorganisms inhabiting 
the world’s oceans have largely been overlooked in this 
regard [1]. Microbial communities in extreme environ-
ments have immense potential as unexploited resources 
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discovering bioactive molecules or novel drugs. Among 
the potential sources of natural products, bacteria have 
been proven to be a prolific source with a surprisingly 
small group of taxa accounting for the vast majority of 
compounds discovered [2].

Although more than 100 drugs exist today that come 
from terrestrial microorganisms, arguably the most 
important drug in medicine is the potential from land-
based microbial sources, which began to dwindle nearly 
10 years ago. Pharmaceutical investigators searched 
around the globe for new terrestrial, drug-producing 
microbes, but with diminishing payback [3].

The first serious effort in studying marine natural 
products started in 1951 with Bergman and Feeney’s 
pioneering work that resulted in the isolation of spon-
gothymidine and spongouridine from the sponge Crypto‑
tethya crypta Laubenfels. This finding led to the synthesis 
of arabinosyl cytosine (Ara-C), a marine-derived antican-
cer agent used mainly to treat different forms of leuke-
mia. Since the 1950s, marine organisms have been shown 
to be rich sources of structurally novel and biologically 
active metabolites, constituting valuable opportunities 
for drug discovery, an area of extreme importance among 
the scientific community [4].

Although more than 30,000 diseases have been clini-
cally described, less than one-third of these can be 
treated symptomatically, and only a few can be cured. 
New therapeutic agents are needed to treat medi-
cal needs that are currently unmet. Natural products 
once played a major role in drug discovery. The marine 
environment coves more than 70% of the world’s sur-
face. In the past, this has proven to be a rich source of 
extremely potent compounds, which represent a con-
siderable number of drug candidates [4]. However, to 
date, the biodiversity of marine microbes and the versa-
tility of their bioactive metabolites have not been fully 
explored.

The marine environment was once thought to have 
high salt, poor nutrition, and less microbial growth. On 
the contrary, soil microbes are widely regarded as living 
in a more crowded and competitive environment. The 
ecology of marine natural products reveals that many 
of the compounds isolated from the marine source are 
chemical weapons and have evolved into highly potent 
inhibitors of biological processes in the prey, predators, 
or competitors of the marine organisms that utilize them 
for survival [5].

Main text
Introduction
Marine sources have played a significant role as an ori-
gin for lead molecules ascertained for various pharmaco-
logical utilizations in recent times. Interestingly, marine 

microorganisms remain as the most undiscovered and 
essential provenience of umpteen bioactive metabolites. 
From the shallow water in the seashore to the abysmal 
seaward areas that canvas 70% of the biosphere, micro-
organisms engross an endurable stretch [6]. The varying 
temperature, pressure, and source of light in the marine 
system compared to the terrestrial environment possibly 
helps in producing novel secondary metabolites by some 
marine organisms.

Microbes, especially in the marine environment, 
can withstand high salt concentrations, high pressure, 
nutrition depletion, and cold temperatures. Natural 
sources producing biological materials, screened by high 
throughput screening methods for their therapeutic 
activity, lead to developing a commercially viable pro-
cess or product [7]. Bioprospecting marine habitat is one 
of the most prolific platforms because of its diverse and 
under passed microbial population. Microbes can easily 
detect, adapt, and react to their environment and com-
pete by producing specific secondary metabolites for 
protection and survival. These compounds developed in 
reaction to stress have shown value in biotechnological 
or pharmaceutical applications [7] (Fig. 1).

In reality, marine natural products’ ecology shows 
that many of these compounds are chemical weapons 
and have grown into highly potent physiological process 
inhibitors in prey, predators, or marine organism rivals 
that use them for survival. Bioprospecting will help in 
unraveling the enigma of the bioactive metabolites from 
marine microbes [8].

From the beginning of humankind, natural products 
have been a beneficial source as a remedy for various ail-
ments. In worldwide, the available drugs for clinical pur-
pose represents more than 50% are of their natural origin. 
The drug discovery process from natural products is still 
ongoing due to synthetic drugs’ side effects [9]. The crude 
product has a significant impact on producing new medi-
cines that bypass infectious diseases [10].

The marine microbial species tends for conceivable bio-
technological and is also an essential source of ecological 
maintenance. It is evident from the 16S rRNA sequenc-
ing that marine microbial species such as Bacteria and 
Archae have a highly diverse taxonomy [11]. Metagen-
omic studies have revealed that extremophile prokary-
otes from marine habitats are also sources of novel genes 
and, consequently, new bioproducts, including enzymes 
and other active metabolites [12] (Fig. 2).

The extreme ecological variations in the marine habitat 
forced the inhabitant organisms to produce a class of tol-
erable hydrolase enzymes such as proteases, lipases, gly-
coside hydrolases, which is used in industrial processes 
due to their novel specificities and properties of tolerance 
to extreme industrial conditions. Therefore, studying 
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and understanding these microorganisms is necessary 
to exploit the biochemical, ecological, evolutionary, and 
industrial potential [13].

Bioactivity of novel compounds from marine 
microorganisms
The resistance of microorganisms against antibiotics is 

Fig. 1  Sample collection and processing by a metagenomic approach (Marine environmental samples are collected from different marine 
sources, and the genomic DNA is extracted from the samples. The metagenomics library construction helps in the generation of DNA fragments of 
appropriate size and also in the ligation of the fragments followed by screening)

Fig. 2  Sample collection and processing by culture-dependent approach (In the culture-dependent method, the microorganisms are enriched 
using selective media followed by biochemical characterization and taxonomical characterization.)
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a severe global issue. There is a need for novel chemical 
compounds capable of a battle against infections pro-
voked by multidrug-resistant pathogens. The discovery 
of new products from natural sources is mainly essen-
tial for the development of novel antimicrobial agents. 
Currently, antimicrobial drugs for medical treatment 
derived from natural origin exhibit Actinobacteria as 
the most important secondary metabolite source. Car-
bohydrates, pigments, polyphenols, peptides, proteins, 
and essential fatty acids are marine bioactive com-
pounds widely studied for various applications. These 
compounds have rheological effects and are found help-
ful in the food industry and diverse biological functions 
such as antioxidant, anti-thrombotic, anti-coagulant, 
anti-inflammatory, anti-proliferative, anti-hyperten-
sive, anti-diabetic, and cardio-protective activities [14]. 
Novel bioactive compounds with extensive activities 
will be discussed here.

Antibacterial potential of bioactive compounds from marine 
microorganisms
The treatment options for some diseases like Alzheimer’s 
disease, Parkinson’s disease, rheumatoid arthritis (RA) 
and other forms of arthritis, type-1 diabetes, heart dis-
eases, irritable bowel syndrome, allergies, asthma, can-
cer, and many others are limited, and certain drugs have 
significant side effects on patients’ health on overdose. 
Therefore, other alternatives that could theoretically help 
to manage these troublesome bacterial infections need 
exhaustive investigations. Since ancient times, the utility 
of natural products for antimicrobial therapy and other 
diseases has been a promising treatment [14]. The anti-
bacterial potential of specific bioactive compounds from 
marine bacteria is extensively mentioned below.

Spirotetronate compounds  Maklamicin of the class pol-
yketide is a novel spirotetronate compound isolated from 
the Micromonospora sp. GMKU326 in Thailand. Mak-
lamicin exhibited potent antimicrobial activity with MIC 
values of 0.2, 1.7, 6.5, 13, and 13 μg/ml against Micrococ‑
cus luteus, Bacillus subtilis, Bacillus cereus, Staphylococ‑
cus aureus, and Enterococcus faecalis; on the other hand, 
it showed a lower activity against Candida albicans (MIC 
= 50 μg/ml). Maklamicin also showed a potent cancer 
cell cytotoxicity [15].

The Actinomadura sp. TP-A0878 is capable of produc-
ing a spirotetrone compound nomimicin of polyketide 
origin. Nomimicin showed potent antimicrobial activ-
ity against Micrococcus luteus, Candida albicans, and 
Kluyveromyces fragilis with MIC values of 6.3, 12.5, and 
12.5 μg/ml [16].

Lobophorin F isolated from the Streptomyces sp. SCSIO 
01127 is a novel compound possessing antibacterial 
and antitumor activities with MIC values of 2,8,8 μg/ml 
against Bacillus thuringiensis, Staphylococcus aureus, and 
Enterococcus faecalis [17]. The Streptomyces sp. strain 
MS1 00061 with provenance from the South China Sea 
is efficient to produce three secondary metabolites of the 
family lobophorin (lobophorin A, B, and G). The signifi-
cant anti-BCG effect is identified with these three metab-
olites [18].

Ansamycin‑type polyketide compounds  Novel ansamy-
cin-type compounds isolated from Chilean Atacama 
Desert soil from the Streptomyces sp. strain C34 labeled 
as chaxamycins A–D showed potent antibacterial activity 
against Staphylococcus aureus ATCC25923 and Escheri‑
chia coli ATCC25922. Chaxamycins (A–C) were found 
to inhibit ATPase activity (41–46% of inhibition at 100 
micromolar) [19].

Βeta‑diketones, aromatic compounds  Streptomyces 
asenjonii KNN 42.f from Northern Chile produced novel 
bioactive compounds of the beta-diketones family. Asen-
jonamide C showed the highest antibacterial activity with 
MIC 1.8 μg/ml, 3.9 μg/ml, and 5.4 μg/ml against methi-
cilin-sensitive Staphylococcus aureus, Enterococcus fae‑
cium, and Escherichia coli [20].

Gilvocarcin HE isolated from the Streptomyces sp. 
QD01-2 is termed to exhibit antimicrobial activity 
against Staphylococcus aureus, Bacillus subtilis, Escheri‑
chia Coli, and Candida albicans. Cytotoxic activity 
against the MCF-7, K562, and P388 cell lines, with IC50 
values of 36, 39, and 45 μM convinced that the vinyl side 
chain increased the cytotoxicity and antimicrobial activi-
ties [21].

Zunyimycins B and C isolated from the Streptomyces sp. 
FJS31-2 exhibited antimicrobial activity with MIC = 0.94 
μg/ml and MICs between 3.75–8.14 μg/ml against MRSA 
isolates [22].

Tetracenediones  Streptomyces formicae KY5 strains 
can produce polyketides formicamycins A–L, efficient 
to inhibit MRSA with MIC 0.41 μg/ml and vancomycin-
resistant Enterococcus faecium (VRE) with MIC 0.82 μg/
ml [23].

Lactones  Allocyclinones produced from the Actinoal‑
lomurus sp. ID145698 exhibited antibacterial activity 
with MIC range of 0.25–0.5 μg/ml against Staphylococ‑
cus aureus, Streptococcus pyogenes, and Enterococcus fae‑
calis whereas Enterococcus faecium showed MIC = 4 μg/
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ml. The number of substituents regulated the increase in 
antibacterial activity [24].

RSP 01 from the actinomycin group is a bicyclic chromo-
peptide lactone biosynthesized with RSP02 by the Strep‑
tomyces sp. RAB12. RSP01 with higher antimicrobial 
potential is possessed to have a ketocarbonyl group with 
MIC values of the range 0.007 to 0.06 μg/ml [25].

Quinolones  Agelas oroides, a marine sponge produced 
a novel chlorinated quinolone, ageloline A, which can 
inhibit the growth of Chlamydia trachomatis inclusion 
with an IC50 value of 2.1 μg/ml. Ageloline A lowered the 
genomic damage activated by an oxidative stress inducer, 
4-nitroquinoline-1-oxide [26].

Xanthones  An alluring bioactive compound buanmycin 
isolated from a tidal mudflat in Buan (Republic of Korea) 
efficient with MICs 0.42–12.5 μg/ml against Gram-pos-
itive (Staphylococcus aureus, Bacillus subtilis, Kocuria 
rhizophila) and Gram-negative bacteria (Salmonella 
enterica, Proteus hauseri) and able to obstruct Staphy‑
lococcus aureus sortase A with an IC50 value of 43.2 μM 
[27].

Liu et al. isolated four bioactive compounds citreamicin 
A, citreamicin B, citreaglycon A, and dehydrocitreagly-
con possessing antibacterial activity against Staphylococ‑
cus haemolyticus, Staphylococcus aureus, and Bacillus 
subtilis. Because of the five-member nitrogen heterocycle 
presence in their structure, citreamicin A and citreamicin 
B were more active [28].

Peptides  Kocuriapalustris F-276,345 produced a novel 
thiazozyl peptide kocurin (PM181104) for medication of 
Gram-positive bacterial infections by blocking its protein 
biosynthesis at the translation stage. Further studies have 
shown that organ and systemic infections in mice can be 
minimized due to kocurinin [29].

Terpenoids  Three novel meroterpenoids—napyra-
diomycins, analogs isolated from the Streptomyces sp. 
strain SCSIO 10428 (Beihai, Guangxi province, China). 
3-dechloro3-bromonapyradiomycin A1 are effective 
against Staphylococcus aureus, Bacillus subtilis, and 
Bacillus thuringensis and revealed cytotoxic activity 
against human cancer cell lines [30].

A novel actinomadurol isolated from Actinomadura 
KC191 afforded a novel scaffold for antibiotic diagnosis 
due to its unique 19-norditerpenoid-carbon. It inhib-
ited Bacillus subtilis, Staphylococcus aureus, Kocuria 

rhizophila, Proteus hauseri, Salmonella enteric with MIC 
values of 0.39 to 3.12 μg/ml [31].

Lipopeptides  Arylomycin A6 identified from par-
vus HCCB10043 exhibited antibacterial activity with 
the MIC of 1 μg/ml against Staphylococcus epidermidis 
HCCB20256 with the requirement of ultra-performance 
liquid chromatography coupled with tandem quadrupole 
and time of flight high-resolution mass spectrometry 
[32].

Depsipeptides  A Streptomyces sp. capable of producing 
ohmyungsamycins A and B containing unusual amino 
acid units showed inhibitory activity against Bacillus sub‑
tilis, Kocuria rhizophila, and Proteus hauseri with MICs 
= 1.56–49.5 μg/ml [33].

Sun et  al. identified compounds active against different 
MRSA strains fijimycins A and C, with MICs in the range 
of 4–32 μg/ml from the Streptomyces sp. CNS-575 strain 
which belongs to the etamycin-class depsipeptides [34].

Amylolytic actinobacterium  The mangrove ecosystem, 
due to its varied microbial association, tends to produce 
unique bioactive compounds. Microbacterium man‑
grovi MUSC 115T, Sinomonashumi MUSC 117T, and 
Monashia flava MUSC 78T belonging to actinobacte-
ria, were isolated from mangrove soils at Tanjung Lum-
pur, Peninsular Malaysia. The extracts Microbacterium 
mangrovi MUSC 115T, Sinomonashumi MUSC 117T, 
and Monashia flava MUSC 78T exhibited bacteriostatic 
effects bacteria such as Methicillin-resistant Staphylo-
coccus aureus (MRSA) ATCC 43300, ATCC 70069, Pseu-
domonas aeruginosa NRBC 112582. The neuroprotec-
tive studies revealed M. mangrovi MUSC 115T extract 
can exhibit neuroprotective properties in oxidative stress 
and dementia model. The extract M. flava MUSC 78T 
defended SHSY5Y neuronal cells in the hypoxia model. 
Anti-cancer effects by the extracts M. mangrovi MUSC 
115T and M. flava MUSC 78T against Ca Ski cell line 
make the compound more alluring [35].

Antioxidant potential of bioactive compounds from marine 
microorganisms
Marine sediments acquired from Chennai, Tamilnadu, 
India, labeled as VSKB 1 to VSKB 6 were screened out 
for their antibacterial and antioxidant activities in which 
VSKB 3 exhibited activity against Salmonella typhi and 
higher antioxidant activity in DPPH scavenging assay 
(88.32%), metal chelating assay (80.7%), and reducing 
power assay (0.80%) VSKB-3. Further, the isolate VSKB-3 
is partially characterized by conventional methods, using 
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the Nonomura key. It showed similar characteristics to 
Streptomyces bluensi and will be helpful in producing 
drugs against Salmonella typhi [36].

Anti‑larvicidal potential of bioactive compounds 
from marine microorganisms
(Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy) anthracene-
9,10-dione extracted from Nocardia alba KC710971 was 
analyzed for its anti larvicidal activity in different con-
centrations against mosquito larvae Aedes aegypti, Culex 
quinquefasciatus, and Anopheles stephensi and also New-
castle disease virus and infectious Bursal disease virus. 
Similar reports were acquired by Vijayakumar et al. [37] 
and Subhasish Saha et al. [38, 39] in the Nocardiopsis sp. 
Dhanasekaran et al. identified actinomycetes strains hav-
ing larvicidal activity against Anopheles mosquitoes [40]. 
The novel bioactive substances present in the bacteria 
help destroy the larvae’s cuticle layer, thereby inhibiting 
it [41].

Anti‑inflammatory activity of bioactive compounds 
from marine microorganisms
Inflammation, a crucial component of host responses 
to multiple stimuli, including injury, microbial inva-
sion, and immune responses, includes different biologi-
cal pathways guided by external and internal stimuli. 
Compounds known as non-inflammatory agents may be 
modulated, diminished, or blocked by these biological 
pathways. Drugs developed from natural products are 
in high demand as the synthetic drugs used in treating 
inflammatory disorders cause adverse side effects. Novel 
compounds like sesquiterpenoids, diterpenes, steroids, 
polysaccharides, alkaloids, and fatty acids, isolated from 
marine organisms, are found to exhibit anti-inflamma-
tory activity.

Polysaccharides  Marine polysaccharides including 
alginate, porphyran, fucoidan, chitin, and chitin deriva-
tives, are used as down regulators of allergic responses 
[42]. Polysaccharides isolated from algae that are mostly 
sulfated exhibit anti-inflammatory activity in  vitro and 
in  vivo [43–45], which attributes to their structure and 
physicochemical characteristics [46].

Proteins  Marine lectins are found to have anti-inflam-
matory activity due to their carbohydrate-binding site 
[47]. Green seaweed Caulerpa cupressoides efficiently 
produce lectin and is administered in the left temporo-
mandibular joint half an hour before zymosan injec-
tion. As a result, reduced zymosan-elicited arthritis and 
mechanical hypernociception are noticed in rats. Also, 
suppression in the leukocyte accumulation in synovial 
fluid is observed. But when treated with opioid receptor 

antagonist naloxone or ZnPP-IX, the activity of lectin 
declined. However, lectin blocked leukocyte influx and 
TNF-alpha and IL-1beta expression in the temporoman-
dibular joint, proving that lectin vitiates temporomandib-
ular joint hypernociception and inflammation depends 
partially on suppression of IL-1beta and TNF-alpha [48].

Enzyme inhibitors
Polymeric 3-alkylpyridinium salts composing of N-butyl 
(3-butylpyridinium) have been isolated from marine 
sponge Renierasarai. N-Butyl-3-butylpyridinium iodide, 
the monomer of the inhibitor, has been synthesized 
which acts as acetylcholinesterase inhibitors. The TLC 
bioautography method was carried out to assess the 
acetylcholinesterase inhibitory activity of the marine 
extracts. Extracts obtained from soft corals were more 
active. 14-Acetoxycrassine was determined as the bioac-
tive compound using X-ray diffraction. Adding to this, 
the acetylcholinesterase inhibitory activity of 14 cembra-
noids has been isolated from soft corals Euniceaknighti 
and Pseudoplexauraflagellosa. The quantitative test, 
14-acetoxycrassine and asperdiol, exhibited IC50 values of 
1.40–0.113 and 0.358–0.130 μM, respectively [49].

In Alzheimer’s disease, acetylcholinesterase inhibition 
is an important checkpoint. Acetylcholinesterase, alpha-
glucosidase, and xanthine oxidase inhibitory activity of 
55 ethyl acetate extracts were identified in which Vibrio 
neocaledonicus exhibited 98.95% activity [50].

Table 1 shows the bioactive secondary metabolites iso-
lated from marine sources, their structure, and applica-
tions in different fields.

Leading secondary metabolites from marine sources 
and their role against various diseases
Against tuberculosis
Tuberculosis is the greatest threat around the globe. 
However, there are anti-tuberculosis (anti-TB) medi-
cines, which lowered the fatality drug-resistant forms. 
Nevertheless, of the clinical drugs, biodiverse marine 
microorganisms have been identified as a drug source 
in treating tuberculosis. Nearly 170 compounds isolated 
from marine sources tended to exhibit anti-TB proper-
ties. The current anti-TB agents rifampicin, streptomy-
cin, amikacin, viomycin, capreomycin, kanamycin, and 
cycloserine possess in  vitro activity against Mycobac‑
terium tuberculosis with MICs of 0.2, 0.5, 1.0, 4.0, 5.0, 
and 6.0 μg/mL, respectively [97]. The initial MIC value 
should be less than 64 μg/mL to identify potential anti-
TB compounds, or the growth inhibition should be more 
significant than 75% at 12.5 μg/mL [98, 99]. Addition-
ally, a selectivity index (SI, IC50/MIC) more significant 
than 10 has been used as a benchmark to screen anti-TB 
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compounds that can further develop [98, 99]. With their 
unique aquatic environment and rich biodiversity, the 
oceans have proven to be a plentiful source of diverse 
natural products with significant antimicrobial, antiviral, 
antimalarial, antitumor anti-inflammatory, and antioxi-
dant activities [100].

Neurodegenerative diseases
Neurodegenerative disorders are characterized by mito-
chondrial dysfunction and reactive production of oxy-
gen species (ROS), among cellular pathologies, thereby 
related to oxidative stress. The central nervous system is 
peculiarly sensitive to free radical damage due to its high 
oxygen consumption ratio, rich content of phospholipids, 
and high levels of iron, which can catalyze oxidative reac-
tions and contribute to an increase in the production of 
free radicals. This is coupled with a low content of anti-
oxidant defenses in the brain that is even more altered in 
Neurodegenerative disease.

Secondary metabolites preventing oxidative stress  Oxi-
dative stress is a frequent checkpoint in neurodegen-
erative diseases, widely associated with mitochondria. 
These two compounds, glutathione and catalase, dis-
played complete protection against oxidative stress with 
mitochondrial function improvement, ROS production 
inhibition, and antioxidant enzyme levels. Further stud-
ies have reported that anhydroexfoliamycin acts as an 
inducer of Nrf2 nuclear translocation over the Nrf2-ARE 
pathway and can significantly inhibit the uncoupler’s 
mitochondrial effect FCCP over cytosolic Ca2+, point-
ing mitochondria as a cellular target for this molecule. 
Also, both compounds were able to reduce the caspase-3 
activity induced by staurosporine, an apoptotic enhancer. 
These show that Streptomyces metabolites could help 
develop new drugs to prevent neurodegenerative disor-
ders such as Parkinson’s and Alzheimer’s diseases and 
cerebral ischemia [101].

The Streptomyces sp. UTMC 1334 is considered a poten-
tial anti-acetylcholinesterasic sources with an IC50 value 
of 0.36 ± 0.02 μg/mL, since extracts with an IC50 value 
lower than 1.0 μg/mL were considered strong anti-acetyl-
cholinesterasic [102, 103]. The Streptomyces sp. UTMC 
1334 is taxonomically identified as Streptomyces lateri‑
tius (99.41%). This is the first report of marine-isolated 
Streptomyces lateritius producing metabolites with AChE 
inhibitory activity. Six antibiotics of the granaticin group 
have been isolated from Streptomyces lateritius so far. 
The Granaticins are a well-documented series of quinone 
antibiotics and are reported to have antibacterial, antitu-
mor, and anti-protozoal activities [104, 105].

Granaticin B is highly active against Staphylococcus 
aureus with a MIC range from 0.9 to 3.6 μmol/l. Effec-
tive inhibition of biofilm formation against Staphylococ‑
cus aureus is also reported [95]. Streptocyclinones A and 
B, isolated from the Streptomyces sp. to improve AD hall-
marks, were evaluated. Compounds were able to protect 
SH-SY5Y neuroblastoma cells from H2O2-induced oxida-
tive injury by activating the nuclear factor E2-related fac-
tor (Nrf2) [106].

Alzheimer’s disease  Alzheimer’s disease (AD) is a slow 
and progressive degeneration with synaptic loss and final 
neuronal death. The impairments are located in specific 
brain regions engaged in learning and memory processes. 
The indication of this disorder is the presence of senile 
plaques and neurofibrillary tangles (NFTs). These senile 
plaques are extracellular aggregates of amyloid-beta pro-
tein produced by the incorrect cleavage of the amyloid 
precursor protein (APP), and NFTs are intracellular accu-
mulations of abnormal hyperphosphorylated tau pro-
teins. Many hypotheses illustrate these mechanisms, the 
most accepted of which is the amyloid cascade hypoth-
esis that proposes the abnormal amyloid is processed by 
beta and gamma secretases and as the main event of AD 
[107] (Fig. 3).

Although amyloid and tau approaches have been widely 
adopted and currently are the most studied ones, oxida-
tive stress-based strategies have also been tried, using 
two different routes: through exogenous antioxidants 
or by the induction of endogenous antioxidant defenses 
through the nuclear factor erythroid 2-related factor 2 
(Nrf2) [107].

Hymenialdisine belongs to a novel class of CDK inhibi-
tors isolated from Agelasidae, Axinellidae, and Hali-
chondriidae families of marine sponges. The CDK 
inhibitory efficacy of HD is understood by observing its 
binding interactions in the CDK2–HD crystal structure. 
In  vivo phosphorylation of particular neuronal proteins 
by GSK-3 and CDK5 is inhibited by HD. It inhibits the 
phosphorylation of tau, which is indicative of Alzheimer’s 
disease. HD could be a lead chemical for analyzing the 
role of tau hyperphosphorylation in neurodegenerative 
diseases and specific inhibitors of kinases involved in AD 
and other degenerative disorders. Several models were 
used to demonstrate the effects of HD on kinases in vivo. 
These findings motivated researchers to look into HD 
as a potential treatment for neurodegenerative diseases 
[96]. Hymenialdisine also suppresses many pro-inflam-
matory cytokines (IL-1, IL-2, IL-6, and NO) by inhibition 
of the NF-kB signaling pathway, which could be useful in 
the treatment of inflammatory diseases [108].
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Parkinson’s disease  Parkinson’s disease (PD) is a neu-
rodegenerative disorder caused by the loss of dopamin-
ergic neurons, leading to patients’ motor dysfunctions. 
Although PD’s etiology is still unclear, the death of dopa-
minergic neurons during PD progress was revealed to be 
associated with the abnormal aggregation of synuclein, 
the elevation of oxidative stress, the dysfunction of mito-
chondrial functions, and the increase of neuroinflamma-
tion. However, current anti-PD therapies could only pro-
duce symptom-relieving effects because they could not 
provide neuroprotective effects and stop or delay dopa-
minergic neuron degeneration. Marine-derived natural 
compounds, with their novel chemical structures and 
unique biological activities, may provide anti-PD neuro-
protective effects [109].

Secondary metabolites from marine-derived bacteria 
represent a rich source for drug development with novel 
chemical structures and diverse biological activities [110, 
111]. NP7 is a marine-derived compound from the Strep‑
tomyces sp. NP7 is an antioxidant and can pass the blood-
brain barrier. NP7 at 5–10M is capable of preventing 
apoptosis and necrosis induced by H2O2 in neurons and 
glial cells [112]. Also, NP7 can inhibit microglial activa-
tion and prevent the increased phosphorylation of ERK 
induced by H2O2. Therefore, NP7 can act as a neuropro-
tective agent against oxidative stress in PD [113].

The inhibitory activity of marine-derived compounds 
piloquinones, isolated from the Streptomyces sp., on 
MAO-B was reported by Takeuchi et  al. [114]. Piloqui-
none A and piloquinone B were isolated from the Strepto‑
myces sp. CNQ-027 [115] among which piloquinone (A) 
is a potent inhibitor of MAO, with an IC50 value of 1.21 
M for MAO-B and an IC50 value of 6.47 M for MAO-A. 
Simultaneously, piloquinone (B) is only effective against 
MAO-B, with an IC50 value of 14.50 M (63). These results 
indicated that piloquinone derivatives may be useful lead 
compounds in the development of MAO-B inhibitors to 
treat PD.

Autoimmune diseases
The autoimmune disease includes rheumatoid arthritis 
(RA) and other forms of arthritis, type-1 diabetes, heart 
diseases, irritable bowel syndrome, allergies, asthma, 
cancer, and many others. Over the past few decades, it 
was realized that the process of inflammation is virtu-
ally the same in different disorders, and a better under-
standing of inflammation may lead to better treatments 
for numerous diseases. Inflammation is the activation of 
the immune system in response to infection, irritation, or 
injury, with an influx of white blood cells, redness, heat, 
swelling, pain, and dysfunction of the organs involved. 
Although these conditions’ pathophysiological basis is 

Fig. 3  Pathological hallmarks of Alzheimer’s disease
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not fully understood, reactive oxygen species (ROS) have 
often been implicated in their pathogenesis. In fact, the 
antioxidant defense system is compromised in inflamma-
tory diseases, as evidenced by increased oxidative stress 
markers and decreased protective antioxidant enzymes 
in patients with rheumatoid arthritis (RA).

Secondary metabolites from the Actinomycetes sp. for 
inflammatory diseases  Cyclomarins are three cyclic 
heptapeptides (A, B, and C), isolated from the marine 
bacterium actinomycete, belonging to the Streptomyces 
sp., along the Californian coast. Marine actinomycetes 
have been exploited as a source of biologically active sec-
ondary metabolites with antibacterial and anti-cancer 
properties [93]. Some molecules have also been reported 
to be anti-inflammatory, such as cyclomarins and sali-
namides [116]. Cyclomarin A, constituted of three com-
mon and four unusual amino acids, showed potent anti-
inflammatory and anti-proliferative activities in in  vivo 
and in vitro assays, managing to inhibit edema pain simi-
lar to the drug hydrocortisone [117]. A moderate anti-
inflammatory effect has also been reported in cycloma-
rin C, whose total synthesis was recently experimented 
and reported [118]. That is why both cyclomarin A and C 
and their derivatives can act as potent anti-inflammatory 
therapies naturally.

These five peptides (A, B, C, D, and E) were isolated, 
like cyclomarin, from marine actinomycetes, belonging 
to the Streptomyces sp., isolated from the surface of the 
jellyfish Cassiopeaxamachana, found in Florida waters 
[116]. Salinamides A and B are the two primary bicyclic 
metabolites, with potent topical anti-inflammatory activ-
ity and moderate antibiotic activity against gram-positive 
bacteria, and could be used to treat tissue inflammation 
and some infections [119].

Spectral and chemical techniques are useful to construct 
minor metabolites, Salinamides C, D, and E. In salina-
mide D, a similar structure is observed with isoleucine 
replaced by valine. Light anti-inflammatory activity is 
identified in salinamides C and E, thus potentially able to 
combat inflammatory disease.

Different types of cancer
Chemotherapy is one of the primary therapies against 
cancer. A significant number of antitumor compounds 
are natural products or their derivatives, mainly pro-
duced by microorganisms. In particular, actinomycetes 
are the producers of many natural products with different 
biological activities, including antitumor properties. Sev-
eral structural classes of antitumor compounds include 

anthracyclines, enediynes, indolocarbazoles, isoprenoids, 
macrolides, non-ribosomal peptides, etc. These com-
pounds’ antitumor activity is exerted by inducing apop-
tosis through DNA cleavage mediated by topoisomerase 
I or II inhibition, mitochondria permeabilization, and 
inhibition of key enzymes involved in signal transduction 
like proteases or cellular metabolism and some cases by 
inhibiting tumor-induced angiogenesis. Marine organ-
isms have attracted particular attention in the last years 
for their ability to produce interesting pharmacological 
lead compounds [120] (Fig. 4).

Many of the antitumor compounds from marine drugs 
result from marine actinobacteria, and these metabolites 
show a crucial part in the proof of identity of the phar-
maceutical compound. Presently, it seems that there have 
been only a few studies concentrating on finding thera-
peutic compounds obtained from marine actinobacteria 
to be used as anti-cancer agents, as well as anti-infective. 
Some antitumor compounds from marine sources and 
their role in different types of cancer are discussed below.

Human colon cancer  A high number of type I polyke-
tide-derived compounds with antitumor activity have 
been isolated from marine actinomycetes. Such is the 
case of arenicolides, 26-membered polyunsaturated mac-
rolactones, produced by the obligate marine actinomy-
cete Salinisporaarenicola strain CNR-005 isolated from 
a marine sediment sample collected at a depth of 20 m 
from the coastal water around the island of Guam.

Daryamides also belong to the manumycin family of 
compounds. They were isolated from Streptomyces strain 
CNQ-085 obtained from marine sediment collected at a 
depth of 50 m off the San Diego coast, California. Dary-
amides A to C and (2E,4E)-7-methylocta-2,4-dienoic acid 
amide are subjected to cytotoxicity evaluation against the 
human colon carcinoma cell line HCT-116, showing that 
daryamide A exhibited significantly more potent cancer 
cell cytotoxicity, with an IC50 of 3.15 μg/mL than dary-
amides B and C [58].

Marineosins, related to the prodigiosin class of polypyr-
role bacterial pigments, are spiroaminal compounds con-
taining two pyrrole functionalities produced by Strepto‑
myces strain CNQ- 617 isolated from a marine sediment 
sample collected offshore of La Jolla, California. Marine-
osins showed significant inhibition of human colon car-
cinoma HCT-116 cell line with IC50 values of 0.5 μM for 
marineosin A and 46 micromolar for marineosin B [121].

Human cervical cancer  Chalcomycin, a 16-membered 
macrolide, is produced by the Streptomyces sp. M491 
isolated from the Qingdao coast (China) [122]. Besides, 
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chalcomycin and the related compound chalcomycin B 
have been isolated from Streptomyces strain B7064 found 
in mangrove sediments in Hawaii [123]. Chalcomycin is 
found to inhibit protein synthesis in HeLa human cervix 
carcinoma cell line [124].

Human skin cancer  Human rare macrodiolides com-
posed of dimeric 2-hydroxy-6-alkenyl-benzoic acid lac-
tones with conjugated tetraene-pentahydroxy polyketide 
chains, produced by the Marinispora sp. CNQ-140 was 
isolated from a sediment sample collected at a depth of 
56 m offshore of La Jolla, California. These compounds 
inhibit cancer cell proliferation with an average LC50 of 
0.2-2.7 μM against the NCI’s 60 cancer cell line panel. 
Marinomycin A showed significant tissue type selectiv-
ity being more active against human melanoma cell lines 
LOX IMVI, M14, SK-MEL-2, SK-MEL-5, UACC-257, and 
UACC-62 skin cancer [120].

Mammary cancer  Manumycin A and chinikomycins A 
and B (the quinone form of chinikomycin A) were iso-
lated from the Streptomyces sp. M045 is derived from the 
sediment of Jiaozhou Bay in China. Chinikomycins A and 
B showed moderate antitumor activity. Chinikomycin B 
showed selective antitumor activity against the mammary 
cancer cell line MAXF 401NL (IC50 of 3.04 μg/mL) [53]. 
Isolated from the culture broth of Streptomyces strain 
CNH990 isolated from a sediment sample collected at a 

depth of 20 m at the entrance to the Sea of Cortez, 5 km 
east of Cabo San Lucas, Mexico [60]. In cytotoxic assays 
using the human cell line of colon adenocarcinoma HCT-
116, marmycin A showed an IC50 of 60.5 nM, almost 18 
times more potent than marmycin B, which showed an 
IC50 of 1.09 μM. Marmycin A is further evaluated for its 
in vitro cytotoxicity offering a mean IC50 value of 0.022 
μM against 12 human tumor cell lines (breast, prostate, 
colon, lung, leukemia).

Blood cancer  Nonactin, a cyclic polyether, also known 
as macrotetrolide, is isolated from cultures of the Strep‑
tomyces sp. KORDI-3238 from a deep-sea sediment 
sample collected at Ayu Trough in the western Pacific 
Ocean [125]. The biosynthesis gene cluster of nonactin 
has previously isolated and characterized from S. griseus 
DSM40695 [61], revealing that it is synthesized by a non-
iteratively acting type II PKS that involves five ketosyn-
thases and lacks the acyl carrier protein. Nonactin is an 
effective inhibitor against the human K-562 erythroleu-
kemia cell line [126].

Chartreusin is an aromatic glycosylated polyketide, cur-
rently in phase II clinical trials [62], that possesses an 
unusual bislactone synthesized through anthracycline 
intermediates that might undergo a series of oxidative 
rearrangements to generate the final bislactone struc-
ture. This particular biosynthetic process is unraveled by 

Fig. 4  Anti-cancer potential of bioactive compounds from marine source



Page 30 of 38Karthikeyan et al. Journal of Genetic Engineering and Biotechnology           (2022) 20:14 

the isolation of the chartreusin biosynthesis gene cluster 
from S. chartreusis [127]. Chartreusin shows antitumor 
activity by binding to DNA, radical-mediated single-
strand breaks, and inhibition of topoisomerase II [128].

It possessed significant chemotherapeutic activity against 
various tumor cell lines such as murine P388 and L1210 
leukemia and was identified from Streptomyces sp cul-
tures. FX-58, isolated from marine plant Salicorniaher‑
bacea collected in Qingdao, Shandong province, China, 
showed an inhibitory effect against human tumor cell 
lines of pro-myelocytic leukemia HL-60, gastric carci-
noma BGC-823, and adenocarcinoma MDA-MB-435 
with IC50 of 6.83, 82.2, and 56.59 μg/mL, respectively.

Altemicidin with a monoterpene-alkaloid skeleton is pro-
duced by Streptomyces sioyaensis SA-1758 isolated from 
sea mud collected at Gamo, Miyagi Prefecture, Japan. 
This compound inhibited the growth of murine lymphoid 
leukemia L1210 and carcinoma IMC cell lines with IC50 
values of 0.84 and 0.82 μg/mL, respectively, although it 
showed high acute toxicity in mice [63].

Streptochlorin is a 3-substituted indole compound with 
antiangiogenic and anti-cancer activities produced by 
Streptomyces strain 04DH110 isolated from shallow 
water sediment taken at 1 m depth of Ayajin Bay, on the 
East Sea of Korea. Streptochlorin exhibited significant in 
vitro growth inhibitory activity against human leukemia 
K-562 cells with an IC50 of 1.05 μg/mL [64].

Prostate cancer  Ammosamides are pyrroloiminoqui-
none compounds produced by Streptomyces strain CNR-
698 isolated from bottom sediments collected at a depth 
of 1618 m in the Bahamas Islands. Ammosamide A and B 
exhibited significant in vitro cytotoxicity against human 
colon adenocarcinoma HCT-116 cells with an IC50 of 320 
nM each [129].

Hepatic cancer  Caboxamycin is a benzoxazole com-
pound produced by the Streptomyces sp. NTK 937 was 
isolated from an Atlantic Ocean deep sea sediment col-
lected in the Canary Basin. It was tested against different 
tumor cell lines and showed moderate growth inhibitory 
activity towards human gastric adenocarcimona AGS, 
hepatocellular carcinoma Hep G2, and breast carci-
noma MCF7 cell lines with GI50 7.5, 7.4, and 7.3 μg/mL, 
respectively [67].

Compounds of the prodigiosin family, isolated from the 
Saccharopolyspora sp. nov. from sponge Mycale plumose, 
were collected along the coast of Qingdao, China [130]. 
The compounds identified as metacycloprodigiosin and 

undecylprodigiosin [131] exhibited significant cytotoxic 
activities in vitro, as it is recently described for prodigi-
osin family of compounds [132], against five cancer cell 
lines: mouse lymphoma P388, human peripheral blood 
promyeloblast HL60, lung carcinoma A-549 and SPCA4, 
and hepatic carcinoma BEL-7402 with IC50 values 
between 0.007 and 7.52 μM for metacycloprodigiosin and 
0.013 to 0.11 μM for undecylprodigiosin [130].

Marine‑derived inhibitors with anticancer activity
A neurotoxic lipoprotein Hoiamide A was isolated from 
cyanobacterial extracts of the Papua New Guinea cyano-
bacterium Symploca sp. screening inhibitory activity in 
contrast to 53/Mdm2 interaction (EC50 = 4.5 μM) [68, 
133]. Niphateolide, a diterpene isolated from the Indone-
sian sea sponge Niphates olemda, is a p53-Hdm2/Mdm2 
interaction inhibitor [69]. The marine Actinomycete Ver‑
rucosispora produces proximicins A, B, and C, which are 
furan equivalents of netropsin. These support in induc-
ing upregulation of p53 and the cyclin-dependent kinase 
inhibitor p21 [134]. The Arthrinium sp., a marine-derived 
fungus, was used to isolate hexylitaconic acid. With an 
IC50 of 50 g/mL, it blocked p53/Mdm2 binding [70]. Lis-
soclinidine B was extracted from Lissoclinum cf. badium, 
a cancer-fighting chemical that selectively kills altered 
cells with wild-type p53 [71].

Anti-mycin analogs from the marine Streptomyces sp., 
N-acetyl-deformylantimycin A (NADA) exhibited an 
effective way to suppress Hela cells [135]. Himeic acid A 
is isolated from marine fungus Aspergillus sp. exhibited 
ubiquitin-activating enzyme (E1) inhibitory action at 100 
μM [72]. Polyubiquitinated p53 is accumulated in Girol-
line, a marine sponge isolated from Cymbastela can‑
tharell and Axinella brevistyla initiating G2/M cell cycle 
arrest in cancer cells [73]. Leucettamol A isolated from 
the Leucetta aff. microrhaphis sea sponge, at 50 μg/ml, 
inhibits the ubiquitin E2 enzymes Ubc13 and Uev1A by 
50% [74].

Dysidiolide is a novel alkyl-hydroxybutenolide diter-
pene derived from the Bahamas sponge Dysidea etheria 
capable of inhibiting Cdc25 protein phosphatase, caus-
ing the G2/M transition of the cell cycle to be delayed 
by dephosphorylating the p34cdc2/cyclin B complex at 
Tyr15 and Thr14 residues [75]. Sulfircin, a sesquiterpene 
sulfate extracted from a marine sponge Ircinia sp., had 
an IC50 of 7.8 μM for inhibiting Cdc25 phosphatase [76]. 
Coscinosulfate is a sesquiterpene sulfate obtained from 
the new Caledonian sponge Coscinoderma mathewsi 
having significant inhibitory activity towards Cdc25A 
(IC50 = 3μM) [77]. The Fijian sponge Xestospongia car‑
bonaria produced halenaquinone, a pentacyclic pol-
ykeyide molecule that works as an irreversible inhibitor 



Page 31 of 38Karthikeyan et al. Journal of Genetic Engineering and Biotechnology           (2022) 20:14 	

of recombinant human Cdc25B phosphates (activator of 
cyclin-dependent kinase Cdc2), which prevents the cell 
cycle from progressing to the mitotic phase. With an IC50 
value of 19 μM, this drug displayed an inhibitory effect 
against the kinase activity of human EGFR [78].

SAD is a mycotoxin that is isolated from Penicillium 
oxalicum. DNA topoisomerase I is inhibited by SAD 
(MIC = 0.4 μM) and also inhibited the G1 phase of the 
cell cycle in the GSK-3/-catenin/c-MYC pathway, result-
ing in considerable cytotoxic action against different 
cancer cells. SAD slowed the course of the cell cycle in 
human embryonic palatal mesenchymal cells, preventing 
them from proliferating [79, 136].

The triterpene Stellettin B was isolated from the sea 
sponge Jaspis stellifera. At a dose of 0.01 μM, this chemi-
cal inhibits the development of the glioblastoma cell 
line SF295 by 50%. Stettettin B’s mitotic G1 phase arrest 
resulted in a decrease in Cdk and an increase in p27 
expression. The cleavage of Poly ADP Ribose Polymerase 
(PARP) and an increase in ROS generation may be linked 
to apoptosis induction [80].

Phidianidine A is an indole alkaloid isolated from the 
marine opisthobranch mollusk Phidiana military capa-
ble of inhibiting CXCL12-induced DNA synthesis, cell 
migration, and ERK1/2 activation [137, 138]. Fucoidan 
is a sulfated polysaccharide isolated from brown sea-
weeds that contains fucose. Fucoidan crude extracts bind 
CXCL12 and inhibit lung metastasis and tumor growth 
in 4T1 breast cancer cells [139]. JG6 is a new marine-
derived oligosaccharide that has been demonstrated to 
reduce angiogenesis and tumor metastasis by inhibiting 
CXCL12/CXCR4 [140].

Drugs derived from marine sources under clinical trials
Phase III
Plitidepsin is a cyclic depsipeptide isolated from a Medi-
terranean marine tunicate (Aplidium albicans) and is 
structurally linked to didemnins, some of which exhibit 
antiviral effects [141, 142].

Plitidepsin exhibited high antiviral effectiveness and a 
favorable therapeutic index in invitro models of SARS-
CoV-2 infection, outperforming other medicines, includ-
ing remdesivir, preclinical trials. Notably, plitidepsin 
has a similar in vitro antiviral impact against the B.1.1.7 
variety of SARS-CoV-2, which is known to have multi-
ple mutations altering the viral spike protein, which aids 
viral entry by interacting with the human ACE2 receptor 
[143].

Tetrodotoxin (TTX) is a neurotoxin that is primarily 
present in puffer fish and other marine and terrestrial 
species. TTX inhibits voltage-gated sodium channels 
(VGSCs). Some TTX-sensitive VGSCs are extensively 
expressed by main sensory neurons, and they play a 

significant role in pain signaling. TTX is now being tested 
in clinical trials for neuropathic pain caused by chemo-
therapy and cancer-related pain. Tetrodotoxin has been 
studied in both preclinical and clinical settings to treat 
pain caused by neuropathies or cancer and has shown 
efficacy and a favorable safety profile [144].

Phase II
GTS-21 is active in a variety of animal models that are 
commonly used to study memory and learning. In vari-
ous in vitro and in vivo investigations, GTS-21 was bene-
ficial in boosting cell survival. GTS-21 is being developed 
for the treatment of both cognitive dysfunction and neu-
rodegeneration exhibited in Alzheimer’s patients based 
on its preclinical characteristics. GTS-21 was well toler-
ated up to 450 mg/day (150 mg t.i.d.) in normal people 
and showed improvements in cognitive behavior. GTS-21 
could be a novel dementia medication, and it should be 
studied further for its potential therapeutic effects in sev-
eral disorders affecting cognitive function, including Alz-
heimer’s disease [145].

Irvalec® (elisidepsin trifluoroacetate, PM02734) is a 
new marine-derived cyclic peptide from the Kahaladide 
family in clinical trials with preliminary anticancer 
efficacy. Previous research has found a link between 
elisidepsin sensitivity and ErbB3 receptor expression in a 
panel of NSCLC cell lines [146].

Elisidepsin, in combination with CDDP, TAX, or gem-
citabine, could be an effective and viable therapeutic 
approach that could be tested in several in vivo investi-
gations and give a basis for further development of these 
combinational treatments in clinical trials in the future. 
In several cell lines, elisidepsin combined with any of 
the chemotherapeutic drugs had a synergistic impact. 
Elisidepsin treatment could influence cells on the lipidic 
bilayer membrane, which are more likely to possess high 
numbers of ErbB3 receptors, enhancing the activity of 
the various medications examined (CDDP, TAX, or gem-
citabine). In this regard, cancers with overexpression of 
ErbB3, such as metastatic breast or lung tumors, could be 
suitable candidates for these types of combinational trials 
[147].

Phase II
Pseudopterosins and seco-pseudopterosins were iso-
lated from the octocoral Pseudopterogorgia elisabethae 
of the San Andrés and Providencia islands (southwest 
Caribbean Sea), and the antimicrobial profile against 
four pathogenic microorganisms (Staphylococcus aureus, 
Enterococcus faecalis, Pseudomonas aeruginosa, and 
Candida albicans), as well as a more comprehensive 
cytotoxic profile against five human cell lines (HeLa, 
PC-3, HCT116, MCF-7, and BJ) for the compounds PsG, 
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PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-
PsK, and IMNGD were assessed. All of the compounds 
tested had moderate and non-selective cytotoxic activity 
against both tumor and normal cell lines, with PsQ and 
PsG being the most active (GI50 values ranging from 5.8 
to 12.0 M). In terms of antimicrobial action, the com-
pounds were shown to have good and selective activity 
against Gram-positive bacteria, but no activity against 
Gram-negative bacteria or yeast. PsU, PsQ, PsS, seco-
PsK, and PsG were the most active compounds against 
S. aureus (IC50 2.9–4.5 M), and PsG, PsU, and seco-PsK 
exhibited good activity against E. faecalis (IC50 3.1–3.8 
M), equivalent to the reference medication vancomycin 
(4.2 M) [148].

Pseudopterosin H was discovered in the Pseudoptero‑
gorgia elisabethae marine coral. In  vitro screening with 
the MTT, NBT, and LDH assays, as well as AO/EB fluo-
rescence, was used to examine the therapeutic efficiency 
of pseudopterosin H on the PC-3 cell line at varying 
concentrations. Results show that treatment with pseu-
dopterosin H reduces PC-3 cell viability by inducing 
apoptosis and downregulating the production of intra-
cellular reactive oxygen species. The chemosensitivity 
of PC-3 cells to pseudopterosin H therapy implies that 
it could be used as a preventative and therapeutic treat-
ment for metastatic castration-resistant prostate cancer. 
PsH lowers PC-3 cell viability by causing apoptosis and 
lowering ROS levels. PsH may directly impact prooxidant 
enzyme function or indirectly block the pro-inflamma-
tory pathway, NF, resulting in a reduction in ROS. PsH 
has pharmacological properties that could be beneficial 
in the treatment of prostate cancer [149].

Bryostatin 1, a marine-derived natural compound, 
showed procognitive and antidepressant benefits in ani-
mals and is currently being tested in human clinical stud-
ies for the treatment of Alzheimer’s disease (AD). The 
effects of bryostatin 1 on the structure and function of 
hippocampus neurons have been related to its potential 
to improve learning and memory.

Calvin et al. showed that bryostatin 1 promotes corti-
cal synaptogenesis while lowering dendritic spine density 
in a protein kinase C (PKC)-dependent manner using a 
combination of chemical probes and pharmacological 
inhibitors. Compounds that increase synaptic density 
while also causing the loss of immature dendritic spines 
could be a novel pharmaceutical technique for boosting 
memory by raising the signal-to-noise ratio in the brain 
[150].

Tissue factor (TF) is a possible target in cervical can-
cer due to its high expression and link to a poor prog-
nosis. In solid tumors, tisotumab vedotin, a first-in-class 
experimental antibody–drug combination targeting TF, 
has shown promising action. Patients with recurrent or 

metastatic cervical cancer were given tisotumab vedotin 
2.0 mg/kg every 3 weeks until their disease progressed, 
toxicity became unacceptable, or they withdrew their 
consent. In patients with previously treated recurrent or 
metastatic cervical cancer, tisotumab vedotin showed a 
controllable safety profile and promising anticancer effi-
cacy [151].

Other drugs derived from marine sources  The hunt for 
novel chemicals, particularly from marine sources, has 
piqued the scientific community’s interest due to the 
growing number of diabetic patients and the restricted 
number of anti-diabetic medications. Marine biore-
sources have been demonstrated to generate a variety of 
new scaffolds, several of which have unique structures 
[152, 153]. Surprisingly, a terpene (Dysidine) isolated 
from the sponge Dysidea villosa is now being tested in 
preclinical studies for the treatment of diabetes [154].

Cytarabine (Cytosar-U®, Ara-C, DepoCyt®), an anti-
cancer medication derived from the Caribbean sponge 
Tethya crypta, is used to treat acute myelocytic leukemia 
and non-Hodgkin’s lymphoma [155, 156]. ET-743 (Yon-
delis®), derived from the tunicate Ecteinascidia turbi‑
nata, is approved for the treatment of tissue sarcomas 
and ovarian cancer, and eribulin (Halaven®), derived 
from the sponge Halichondria okadai [157], is approved 
for the treatment of metastatic breast cancer and 
advanced liposarcoma. Marine compounds like zicono-
tide (Prialt®), obtained from the cone snail Conus magus 
is used to treat severe and chronic pain [158], and vidara-
bine (Ara-A), isolated from the sponge Tethya crypta is 
used to treat herpes simplex infections [159].

Bioassay-guided fractionation of the EtOAc extract of 
marine sponges led to the isolation of three polyacetylene 
metabolites: a new polyacetylene diol, callyspongidiol (1), 
along with two known compounds, siphonodiol (2) and 
14,15-dihydrosiphonodiol (3). Compounds 1–3 exhibited 
antiproliferative activity against HL-60 with IC50 values 
of 6.5, 2.8, and 6.5 μg/ml, respectively. These metabolites 
induce apoptosis in HL-60 cells [160].

Callyspongidiol and 14,15-dihydrosiphonodiol are pol-
yacetylenediols isolated from marine sponges and are 
pharmacologically active substances. Callyspongidiol and 
14,15-dihydrosiphonodiol activate human DC by phe-
notypic and functional maturation and altered cytokine 
production. The results suggested that some polyacety-
lenediols modulate human DC function in a fashion that 
favors Th1/Th2 cell polarization or IL-10-producing T 
cells, and might have implications in tumors or in auto-
immune diseases [161].
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PP2A inhibition by calyculin-A increased PP2A Y307 
phosphorylation without inhibiting oral cancer cells pro-
liferation in both the cell lines. The available data sug-
gested that abnormal, upregulated expression of p-PP2A 
may promote OSCC proliferation. PP2A plays a major 
role in various signaling pathways, including those that 
regulate the cell cycle, cell metabolism, cell migration, 
and cell survival. Calyculin-A treatment increased AKT 
(Ser 473) and GSK-3β (Ser9) phosphorylation levels in 
both the cancer cells, suggesting that this effect occurs via 
PP2A deactivation. The result suggests that CLA inhib-
ited GSK-3β expression by deactivating PP2A expression 
[162].

The cone snail Conus pulicarius from the Philippines 
provides a specific habitat for actinomycetes and other 
bacteria. A phenotypic screen using primary cultures of 
mouse dorsal root ganglion neurons revealed that one 
C. pulicarius associate, Streptomyces sp. CP32, produces 
a series of natural products that enhance or diminish 
whole-cell Ca2+ flux. These compounds include thia-
zoline compounds and a series of new derivatives, puli-
catins A–E (6-10) [163].

Arenamides are cyclohexadepsipeptides that are pro-
duced via marine bacterial Salinispora arenicola. There 
are three types of these peptides named arenamides A–C. 
Arenamides A and B block or inhibit the activation of 
TNF-induce in a dose- and time-dependent manner with 
IC50 values of 3.7 and 1.7 μM, respectively. Furthermore, 
they are cytotoxic NFkappaB inhibitors and could inhibit 
the production of nitric oxide (NO) and prostaglandin E2 
(PGE2). Also, arenamides A and B show moderate cyto-
toxic activity against human colon carcinoma cell line 
HCT-116 [164]. Derivatives of plakortin named gracil-
ioetheres A–C from Agelas gracilis were isolated from a 
bioassay-guided approach from an active extract using 
P. falciparum assay in  vitro, highlighting gracilioether 
B with a IC50 value of 1.41 μM and moderate cytoxicity 
[165].

Conclusion
In this review, we have identified the derivatives of struc-
turally unique MNPs obtained from marine sources. 
These MNPs display different potent bioactivities involv-
ing not only chemical effects but also pharmaceutical 
activities, including antibacterial, antiviral, fungicidal, 
cytotoxic, neurodegenerative, and antimalarial activi-
ties because these MNPs derived from marine sources 
usually contain reactive groups such as -OH, -NH2, and 
-SH in their chemical structures, and may act as anti-
oxidants. For instance, brown seaweeds contain several 

bioactive forms, such as omega-3 polyunsaturated fatty 
acids (PUFAs), polyphenols, fucosterol, and carotenoids 
at the same time. Marine peptides, marine carotenoids, 
and marine polyphenols are superior compared to analo-
gous terrestrial resources as they can relieve symptoms 
and tackle the possible side effects of pharmacological 
treatment, reducing the risk of complications. The micro-
organisms associated with the marine environment have 
great potential as an essential source of structurally excit-
ing molecules. Increasing ocean exploration has brought 
more marine drugs to the fore. Marine organisms with 
novel structures and diverse behaviors generate a large 
number of bioactive compounds. Bioactive compounds 
that are modified and synthesized from derived leads are 
directly extracted or isolated from marine species.

Commercial medications remain limited in reliev-
ing symptoms and cannot reverse or interrupt the onset 
or prolong certain diseases’ progression. High cost 
and adverse side effects of drugs in older adults under 
treatment involve scientific research falling on natu-
ral treatment practices surrounding marine bioactive 
compounds. Marine-derived compounds have reached 
ongoing clinical trials against multiple diseases and have 
become primary drug production sources.

The consideration of marine samples will be an amaz-
ing and potential route for identifying new secondary 
metabolites. It is evident from the study that secondary-
metabolite development patterns are highly complex 
and that molecular studies may enhance drug discov-
ery. Genetic technologies and bioinformatics methods, 
including metagenomic approaches, genome mining, 
and heterologous biosynthesis, accelerate the discovery 
and accessibility of remaining undiscovered MNPs with 
novel structures and promising marine microorganism 
bioactivities. It is prominent that implementing multi-
ple techniques and exploration methods could effectively 
facilitate the exploitation of novel MNPs with various 
systems. MNPs are well-known sources of secondary 
metabolites suggesting the potential for pharmaceutical, 
food, cosmetic, and medical use. Therefore, it is of great 
economic value and can be used for its industrial and 
academic needs to its new horizons.

To create new medicines for the future, knowledge 
about secondary metabolites from marine sources is cru-
cial. They are an essential source of bioactive molecules 
and inspire drug development by supplying a mixture of 
several bioactive molecules that can synergize and treat 
several diseases with biological outcomes.

The scaffolds of terrestrial natural materials are used 
in more than half of all pharmaceuticals. Despite this, 
with the introduction of high-throughput screening 
technology, natural compounds have been overlooked 
for drug discovery. For successful drug development of 
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complicated structures, several hurdles must be over-
come, including the supply problem and target iden-
tification. Another complication is that because of 
variable environmental conditions; the same organism 
may produce various metabolites at different times. 
The fact that the bioactive compounds are produced by 
microbes living in the marine mammal, rather than the 
invertebrate sea hosts, is a huge obstacle [166]. A sus-
tainable supply of separated and recognized lead com-
pounds can be a challenge if the lead compound is only 
present in small quantities and/or is difficult to isolate 
technically [167]. The required quantity for any of the 
compound’s intended uses (drug, cosmetic, etc.) might 
range from a few grams for preclinical drug develop-
ment and safety investigations in various setups to kilo-
grams for clinical studies in various phases [166]. And 
the quantity of the lead compound can be a significant 
problem.

Furthermore, obtaining intellectual property (IP) rights 
for natural products with relevant bioactivities can be 
difficult, as naturally occurring chemicals are not always 
patentable in their native form, while simple modifica-
tions can be. Because of the complicated structures, the 
supply problem, and target identification, it is still a chal-
lenge for the researchers to translate marine-derived 
compounds into clinical trials [168]. The effectiveness 
of marine natural compounds as drug leads depends 
on advances in technology such as sampling methods, 
nanoscale NMR for structure characterization, total 
chemical synthesis, biosynthesis, and genetic engineer-
ing. The high level of innovation in the field of marine 
natural products will lead to successful marine drug dis-
covery and development, giving us reason to believe that 
marine natural products will form a new wave of drugs 
that will flood the market and pharmacies in the future.
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