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Abstract 

Background:  The era of first green revolution brought about by the application of chemical fertilizers surely led to 
the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertiliz-
ers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led 
to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed 
setting.

Main body:  Increased concentration of anion and cations and their accumulation and distribution cause cellular tox-
icity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by 
either limiting their entry via root system or controlling their distribution and storage. However, the understanding of 
tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identifica-
tion of related genes and their introgression to make the crop more resilient against salinity stress.

Short conclusion:  Novel emerging approaches of plant breeding and biotechnologies such as genome-wide asso-
ciation studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, 
and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques 
have well-established implications to understand plants’ adaptions to develop more tolerant varieties and lower the 
energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance 
and yield penalty.
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Background
Global food demand is continuously increasing, and 
with skyrocketing population, it is expected to double 
in the near future. Feeding the world population with 
the available limited natural resources is not an easy task 
[1–3]. Attributed to several biotic and abiotic stresses, 
genetic potential of the crops is not fully exploited. Abi-
otic stresses encompass raised salinity, temperature and 
drought, alleviation in soil oxygen, pollutants, high UV 
radiation, and inadequate mineral nutrients [3, 4]. Breed-
ing approaches provide an insight for salinity stress 

tolerance as reported in some crops such as rice [5] and 
wheat [6]. Integration of comparative, functional, and 
structural genomics would boost the traditional breeding 
efforts. Genetic manipulation methods have been utilized 
in crop plants to recognize genes related to salt tolerance 
and their introgression [7].. Utilization of molecular tools 
in breeding programs is the most valuable upshot of bio-
technology [8, 9]. However, an enormous space between 
the crop yields in stress conditions and optimal condi-
tions is still leftover.

Salinity stress is a physiological outcome of excessive 
salt in plant cell which has detrimental effects on plant’s 
metabolism. Soils are stratified as saline when the ECe 
(Electrical Conductivity of a saturated soil Extract) is 
≥ 4 dS/m which is roughly equivalent to 40 mM NaCl 
and approximately give rise to osmotic pressure of 0.2 
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megapascal (MPa) [10]. However, plants have numer-
ous morphological (early flowering, prevention of lateral 
shoot development, and root adaptations), physiologi-
cal responses (stomatal responses, osmotic adjustment, 
Na+/K+ discrimination, and ion homeostasis), and bio-
chemical responses (antioxidant activity, polyamines, 
change in hormone level, increased proline level) under 
salinity stress, forming it as a complex phenomenon [11–
13]. Abscisic acid (ABA) is a major phytohormone which 
plays a significant role in improving the performances of 
plants during stress conditions such as salinity, low tem-
perature, and drought [14]. ABA production in the plants 
alleviates the effects of salinity on the growth, transloca-
tion of assimilates, and photosynthesis [15, 16]. Applica-
tion of sodium nitroprusside (SNP) in soybean (Glycine 
max L.) enhances the physiological and morphological 
attributes under saline conditions. It has been reported 
that SNP as nitic oxide (NO) donor could greatly increase 
the salinity tolerance and regeneration potential by mim-
icking of plant hormone and signal molecule [17].

Soil salinity typically inhibits plant growth and repro-
duction through an initial osmotic stress phase fol-
lowed by ionic toxicity due to accumulation of Na+ 
and Cl− ions in the cell cytosol that results ultimately 
in oxidative stress and nutritional deprivation [18, 19]. 
Reactive oxygen species (ROS) scavenging, ion homeo-
stasis, osmotic adjustments, and metabolic activities 

are greatly affected when plants are subjected to salin-
ity stress. In order to overcome these various abiotic 
stresses, plants accumulate compatible harmless bio-
molecules which play a significant role in plant pro-
cesses. These include polyamines [20, 21]; heat shock 
proteins (HSPs) [21, 22]; nitric oxide (NO) [23, 24]; 
and hormones like ABA [14, 25], salicylic acid [26], and 
brassinosteroids [26, 27]. Late embryogenesis abun-
dant (LEA) protein is found to be effective against 
various stresses such as cold, drought, and salinity [28, 
29]. These accumulated solutes have a role in protein 
solubilisation like glycine, ectoine, and betaine and in 
uncharged solutes such as pinitol and mannitol which 
have a scavenging activity of ROS [21]. NO is a vapor-
ous molecule having a significant role in the regulation 
of several developmental processes (cell death, seed 
germination, stomata closure, root growth, flowering, 
and respiration), plant growth, and response to stress 
and a role in signal transduction [23] (Fig. 1).

Various traits have been identified in several studies for 
which expression or presence connecting the plant adapt-
ability to salinity stress conditions (Table  1). Genomic 
approaches and crop physiology provide new insights to 
breeders to overcome salinity stress using new emerging 
tools for crop improvement [9]. Plants cope with salinity 
stress using various mechanisms, and these mechanisms 
can be exploited using strategies as mentioned above. 

Fig. 1  Dissecting mechanisms of salinity tolerance in plants



Page 3 of 18Singh et al. Journal of Genetic Engineering and Biotechnology          (2021) 19:173 	

Ta
bl

e 
1 

Bi
oc

he
m

ic
al

 a
nd

 p
hy

si
ol

og
ic

al
 re

sp
on

se
s 

of
 p

la
nt

s 
to

 s
al

in
ity

 s
tr

es
s

Sr
. n

o.
Pl

an
t t

ra
its

Yi
el

d-
re

la
te

d 
im

pa
ct

s 
on

 p
la

nt
Va

ri
at

io
n 

in
 s

tr
es

s
Re

fe
re

nc
es

1
Pl

an
ts

 ro
ot

 g
ro

w
th

In
hi

bi
tio

n 
of

 n
ut

rie
nt

s 
an

d 
w

at
er

 a
bs

or
pt

io
n

St
re

ss
 lo

w
er

s 
th

e 
os

m
ot

ic
 p

ot
en

tia
l o

f p
la

nt
 ro

ot
s.

[3
0]

2
Le

af
 ti

ss
ue

s
N

ec
ro

si
s 

an
d 

ch
lo

ro
si

s
Sa

lt 
in

 th
e 

ce
lls

 p
ro

du
ce

 to
xi

ci
ty

, a
nd

 a
nt

io
xi

da
nt

 h
el

ps
 in

 lo
w

er
in

g 
th

e 
to

xi
ci

ty
.

[3
0]

3
Le

af
 a

na
to

m
y

Im
pa

ct
 o

n 
le

af
 ti

ss
ue

Re
du

ct
io

n 
in

 th
e 

ep
id

er
m

is
 a

nd
 m

es
op

hy
ll 

th
ic

kn
es

s 
as

 w
el

l a
s 

de
cr

ea
se

 in
 th

e 
in

te
rc

el
lu

la
r s

pa
ce

s
[3

1]

4
O

xi
da

tiv
e 

da
m

ag
e

Ce
llu

la
r t

ox
ic

ity
 d

ue
 to

 p
ro

du
ct

io
n 

of
 re

ac
tiv

e 
ox

yg
en

 s
pe

ci
es

 (R
O

S)
Pl

an
ts

 h
av

in
g 

an
tio

xi
da

nt
 a

ct
iv

ity
 to

le
ra

te
 th

is
 o

xi
da

tiv
e 

da
m

ag
e.

[3
1]

5
O

sm
ot

ic
 p

ot
en

tia
l

A
cc

um
ul

at
io

n 
of

 s
al

t i
n 

th
e 

le
av

es
 c

au
se

 in
ju

ry
 to

 th
e 

le
av

es
 a

nd
 ro

ot
s 

of
 th

e 
pl

an
ts

.
H

al
op

hy
te

s 
to

le
ra

te
 th

e 
sa

lt 
st

re
ss

 b
y 

ac
cu

m
ul

at
io

n 
of

 s
al

t i
n 

th
e 

le
av

es
 

by
 m

od
ify

in
g 

th
e 

os
m

ot
ic

 p
ot

en
tia

l b
ut

 n
ot

 g
ly

co
ph

yt
es

 a
s 

th
ey

 a
re

 
le

ss
 to

le
ra

nt
 to

 s
al

t.

[3
2]

6
Ph

ot
os

yn
th

es
is

 a
nd

 p
ho

to
sy

n-
th

et
ic

 p
ig

m
en

ts
Re

du
ce

d 
ph

ot
os

yn
th

et
ic

 c
ap

ac
ity

C
lo

si
ng

 o
f t

he
 s

to
m

at
a 

by
 s

ub
je

ct
io

n 
of

 p
la

nt
 to

 s
al

t f
or

 a
 s

ho
rt

 ti
m

e 
in

cr
ea

se
s 

th
e 

to
le

ra
nc

e 
of

 p
la

nt
 to

 s
al

t s
tr

es
s.

[3
3]

7
G

as
eo

us
 c

ha
ng

e 
ch

ar
ac

te
ris

tic
s

Sa
lt 

st
re

ss
 n

ot
ab

ly
 d

ec
re

as
ed

 th
e 

fe
w

 g
as

eo
us

 c
ha

ng
es

 c
ha

ra
ct

er
is

tic
s 

lik
e 

w
at

er
 u

se
 e

ffi
ci

en
cy

, t
ra

ns
pi

ra
tio

n 
ra

te
, e

tc
. i

n 
so

m
e 

cu
lti

va
rs

 o
f 

su
nfl

ow
er

.

Sa
lt 

co
nc

en
tr

at
io

n 
im

pr
ov

es
 th

e 
ch

lo
ro

ph
yl

l r
at

io
 a

/b
 a

s 
th

e 
am

ou
nt

 o
f 

ch
lo

ro
ph

yl
l b

 m
ay

 b
e 

tr
an

sf
or

m
ed

 in
to

 c
hl

or
op

hy
ll 

a 
in

 th
e 

co
ur

se
 o

f 
th

e 
pr

oc
es

s 
of

 d
eg

ra
da

tio
n 

re
su

lti
ng

 in
 th

e 
in

cr
ea

se
d 

co
nc

en
tr

at
io

n 
of

 
ch

lo
ro

ph
yl

l a
.

[3
2–

34
]

8
Re

pr
od

uc
tiv

e 
de

ve
lo

pm
en

t
Sa

lin
ity

 c
au

se
d 

st
er

ili
ty

 in
 s

om
e 

pl
an

ts
.

In
 re

sp
on

se
 to

 s
al

in
ity

, p
la

nt
s 

m
od

ify
 it

se
lf 

by
 in

du
ci

ng
 e

ar
ly

 fl
ow

er
in

g 
an

d 
pr

ev
en

tio
n 

of
 la

te
ra

l s
ho

ot
 d

ev
el

op
m

en
t.

[3
5]

9
H

or
m

on
es

In
cr

ea
se

d 
co

nc
en

tr
at

io
n 

of
 A

BA
En

ha
nc

ed
 a

m
ou

nt
 o

f A
BA

 d
ur

in
g 

sa
lt 

st
re

ss
 a

tt
en

ua
te

s 
th

e 
re

pr
es

si
ve

 
eff

ec
t o

f s
al

in
ity

 o
n 

gr
ow

th
 a

s 
w

el
l a

s 
tr

an
sl

oc
at

io
n 

of
 a

ss
im

ila
te

s.
[1

5,
 3

6]

10
A

m
in

o 
ac

id
s

D
ec

re
as

e 
in

 th
e 

co
nc

en
tr

at
io

n 
of

 a
m

in
o 

ac
id

s 
su

ch
 a

s 
m

et
hi

on
in

e,
 

ar
gi

ni
ne

, a
nd

 c
ys

tin
e.

In
cr

ea
se

 in
 th

e 
am

ou
nt

 o
f p

ro
lin

e 
in

 re
sp

on
se

 to
 s

al
t s

tr
es

s
[3

7]

11
Ca

rb
oh

yd
ra

te
s

A
gg

lo
m

er
at

io
n 

of
 tr

eh
al

os
e,

 fr
uc

to
se

, g
lu

co
se

, f
ru

ct
an

s, 
an

d 
st

ar
ch

.
In

 th
e 

ca
rb

on
 s

to
ra

ge
, o

sm
op

ro
te

ct
io

n 
an

d 
sc

av
en

gi
ng

 o
f R

O
S,

 th
es

e 
ca

rb
oh

yd
ra

te
s 

pl
ay

 a
 ro

le
 in

 s
al

t s
tr

es
s 

co
nd

iti
on

s.
[3

1,
 3

8]



Page 4 of 18Singh et al. Journal of Genetic Engineering and Biotechnology          (2021) 19:173 

This paper emphasized salinity stress, its effect on plants, 
and their adaptive mechanisms and discussed new cut-
ting-edge tools to cope with salinity stress in this era 
where food security is the major challenge.

Main text
Physiological aspects of salinity tolerance
Tolerance to salinity is the plant’s potential to grow and 
flourish its life cycle in high saline conditions [11]. Salin-
ity tolerance in crops varied according to the crop type. 
For example, barley is more tolerant to salt than rice, 
legumes are severe sensitive than cereals, and adequate 
salinity tolerance is there in case of Lucerne and Alfalfa 
[39]. The most deleterious effect imposed by salinity 
stress is ion toxicity. Ebrahim et  al. [40] demonstrated 
that tolerance mechanisms such as ion exclusion (Na) 
present in the wild barley (Hordeum vulgare) cause much 
lower accumulation of Na in the root and shoot and bet-
ter K/Na discrimination than in the cultivated barley, 
resulting in the higher survival rate under 300 mM NaCl 
for 4 weeks. When two chickpea varieties (Rupali and 
Genesis 336) subjected to salt stress were compared, they 
exhibited alleviated sugar content and presence of inosi-
tol, galactitol, mannitol, arabitol, xylitol, and erythritol, 
suggesting their roles under salt stress. In another study, 
inositol and sucrose were found to be highly accumulated 
in Atriplex halimus leaves under salt stress. Moreover, in 
Casuarina glauca, trehalose concentration significantly 
enhanced in roots at both 400 and 600 mM NaCl and 
simultaneously decreased carbohydrates such as fruc-
tose, sucrose, and glucose under salt stress [41, 42].

Vacuoles have a potential role in plant cell function-
ing. Salinity stress was the major challenge during the 
evolution of terrestrial plants [43]. SV (slowly activated 
vacuolar channels) are the most copious ion channels 
in vacuoles of plants, and these channels were the first 
discovered channels [44]. The crystallographic structure 
of SV channels has been published in 2016 from Arabi-
dopsis thaliana [45, 46]. To prevent the salt from reach-
ing the leaf surface, plants adopt two techniques. Salt 
ions either pass into the vacuole or get collocated in the 
apoplast. The amount of salt ions should not exceed the 
quantity accumulated in the vacuole [47].

Osmotic adjustment is a physiological adaptation of the 
plants that have drawn attention from past several years 
in response to salinity stress [13, 48]. Studies on physi-
ological responses reveal that Cakile maritima species 
show responses to salinity stress through the mechanism 
of osmotic adjustment and selectivity of potassium ion 
over sodium ion [49, 50]. For maintaining the turgid-
ity of the cell, osmotic adaptations play a significant role 
which enhances the productivity of the crop and develop-
ment of the plant [19]. Contradictory findings about the 

role of proline in salinity tolerance have been reported. 
A markedly higher accumulation of proline took place 
in the leaf tissues of the salinity-sensitive cultivated than 
that of the wild barley genotype [40] and a nonsignifi-
cant contribution of proline in the salinity tolerance of 
Aegilops cylindrica species [51] observed at high levels of 
NaCl treatments. The puzzling differences in the litera-
ture regarding the contribution of proline to salinity tol-
erance can be explained by several facts: (1) the duration 
of the treatment, (2) the intensity of salinity stress, (3) the 
genetic background of the tested species, (4) the physi-
ological stage of the sampling plants, and (5) the envi-
ronmental conditions in which the plant grows [18]. In 
addition to proline contents, among the solutes, the solu-
ble sugar content has an impressive role in the osmotic 
adjustment process under abiotic stresses. In melon 
(Cucumis melo) cultivars exposed to salinity stress, both 
proline content and total sugar content were significantly 
increased [52]. Osmotic adjustment in some plants is 
accomplished by consuming excessive levels of inorganic 
ions [35, 53, 54].

Salinity stress at moderate concentrations for long 
periods (months) or at high concentrations even in 
short periods (weeks) causes growth inhibition and 
ultimately death of the plant. Tolerance to salinity is 
attained through interconnected mechanisms [55]. In 
order to improve salinity tolerance in plants, ion and 
osmotic homeostasis play a significant role in stress-
ful environmental conditions. The final decisive factor 
of these mechanisms includes several ion transporters 
which have a role in distributing toxic ions at cellular and 
organ levels [56]. Studies on salinity tolerance reveal an 
important issue to decide which transporters restrict or 
allow the sodium entry into the cell. A high accumulation 
of sodium ions in the cytoplasm restricts the enzymatic 
activities [57]. The vacuolar layer consists of two types 
of H+ pump namely V-PPase (vacuolar pyrophosphate) 
and V-ATPase (vacuolar type H+-ATPase) [58, 59]. These 
antiporters move the excess salt from the apoplast to the 
cytoplasm of the cell, and sodium moves to the vacuole 
in order to maintain osmotic regulation [60]. V-ATPase 
is the reigning H+ pump available in the plant cell. The 
stability of the plants is controlled by the activity of 
V-ATPase during stress conditions [35]. NHXs (Na+/H+ 
exchangers) sectionalized the Na+ into vacuoles. Na+/H+ 
antiporter is directing the partition of Na+ to the vacuole, 
thus limiting the fixation of Na+ in the cell cytoplasm. 
Activity of Na+/H+ antiporter is arbitrated by the efflu-
ence of Na+ from the roots of the plant which is encour-
aged by the SOS1 (salt overly sensitive) protein [61].

The concept of Na+/K+ discrimination, in which 
uptake of Na+ is exchanged by K+, allow the plant to tol-
erate the salinity stress. That is why the concept of Na+/
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K+ discrimination is taken into account as a significant 
basis in commercial crop selection. But this Na+/K+ dis-
crimination concept is not a basis of salinity tolerance in 
glycophytes. In few salt-tolerant cultivars of barley and 
their wild relatives, there is not any trait for Na+/K+ dis-
crimination [44]. Halophytes favor inclusion of Na+ over 
K+ which acts as a tool in osmotic adjustment and shows 
a positive correlation between salt tolerance and inclu-
sion of Na+ in plants [45]. In cytosol, plant K+ requires 
approximately 100 mM of K+ ion for activities of cyto-
solic enzyme, whereas in vacuoles, K2+ ranges from 10 
to 200 mM. The K+ ion transport from vacuolar tissues 
maintains cell turgidity through membrane channels 
and K+ transporter against the concentration gradient. 
In case of low K extracellular concentration, the affinity 
mechanism of K increases actively. As a result, K+ con-
centration in soil favours the uptake processes. Similarly, 
a decreased Na+ ion concentration (1 mM or less) is 
managed in the cytosolic region. Such enhanced level of 
Na+ concentration in soil under salt stress alleviates the 
competition between K and Na ions for similar mecha-
nism causing diminishing of K+ uptake [42, 61].

Reduction in photosynthetic rate, stomatal/non-stoma-
tal factors, deterioration in chlorophyll and carotenoid 
pigments, and chloroplast degradation were observed 
when exposed to salt stress as observed in Phaseolus 
vulgaris, Zygophyllum xanthoxylum, and Lycopersicum 
esculentum [62, 63]. Mutant studies revealed the role of 
ion transporters and channels in regulating chloroplast 
function during salt stress. The mutant lacking two chlo-
roplast-localized K+ efflux anti-transporter (KEA1 and 
KEA2) demonstrates lowered photosynthetic efficiency, 
and exposure of Na+ in these mutants can improve phe-
notypic traits. However, chloroplasts give retrograde sig-
nals to connect chloroplast status, stimulating signalling 
cascade related to salinity response. In a nutshell, Na+ 
affects photosynthesis by degrading chloroplast function 
and proton motive force and by disrupting the function 
of Co2-functioning enzymes [61].

In halophytes, ion detoxification and osmo-protective 
strategies comprise Na+ extrusion from the roots to the 
xylem cell. The vacuolar compartmentation involving 
NHXs causes ion transportation. Several halophytes syn-
thesize high Na+ in shoot than roots while maintaining 
increase in concentration of K+ as compared with glyc-
ophytes, and thus maintaining Na+/K+ ratio. The above 
findings confirm that halophytes employ various strate-
gies in ion homeostasis and transportation in salinity 
stress condition. Similarly, recent genetic studies on the 
expression of HKT1 and SOS1 genes in Eutrema parvula 
(EpHKT1:1); AcNHX1, AcSOS1, and AcHKT1 in Aegilops 
cylindrica, and E. salsugineum (EsSOS1) conferred higher 
salt tolerance as compared with other homologous 

analogous AtHKT1:1 and AtSOS1 in Arabidopsis [61, 
64, 65]. Apart from salinity-exclusion mechanisms, halo-
phytes have also evolved salt-avoidance mechanisms such 
as excretion (salt glands, bladder hairs, and re-transloca-
tion) and succulence for sodium dilution [66].

Biochemical aspects of salinity tolerance
Plants engage different mechanisms to ensure salinity 
tolerance. At present, findings regarding the metabolic 
changes due to salinity tolerance are partial. A deep 
insight in metabolic as well as biochemical processes 
involving salinity tolerance is necessary for engineering 
of crop plants against salinity stress.

Heat shock proteins (HSPs)
HSPs are dispersed extensively in nature; also, these 
proteins pile up during stress conditions. Heat shock 
proteins are molecular chaperons which have a signifi-
cant role in gathering and folding of proteins and eradi-
cation and destruction of non-useful proteins. Heat 
shock proteins are categorized in accordance to the 
molecular weight. These include small family Hsp, Hsp 
100 family, Hsp 90 family, Hsp 70 family also known 
as DnaK family, and chaperonins such as Hsp60 and 
GroEL [67]. Salinity as well as drought stress is insti-
gated by heat shock proteins (HSPs). Under stress con-
ditions, several heat shock proteins are found to be 
upregulated such as HSP70-9-12 and -33 in poplar [68] 
and HSP70 in wheat [69] and rice seedlings [70]. Addi-
tionally, other heat shock proteins were upregulated in 
salinity stress such as HSP100-75 and -21; HSP90-12 
and -9; HSP40-117 and -113; HSP60-49, -38, -33, and 
-31; and HSP21 in poplar [62] and HSP40 in rice [71]. 
Heat shock proteins such as HSP90 in Arabidopsis 
[22] and small HSPs, Clp (D1, D2), Clp (B1, B2), and 
HSP100 in rice crop [72, 73] exhibited salinity stress 
tolerance. Heat shock protein’s role in salinity stress is 
genotype specific in which HSPs were instigated more 
in cultivars which are salinity tolerant, and these were 
reported in soybean [23]. Studies revealed that heat 
shock proteins (HSPs) are significantly involved in tol-
erance to salinity stress. Transgenic tobacco with HSPs 
of Medicago sativa showed increased salt tolerance 
when compared with wild types at germination stage. 
However, overexpression of HSP-related transcription 
factors alleviated heat and enhanced the susceptibil-
ity to ABA and salinity stress in transgenic Arabidop-
sis. Moreover, increased expression of HSP genes in H. 
vulgare have been studied in site-specific salinity stress 
[53, 56]. According to Cen et al. [74], ion transport effi-
ciency of a plasma membrane intrinsic protein gene 
namely HvPIP2;8 was found when Xenopus laevis was 
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studied. It has also been reported that the expression of 
HvPIP2;8 significantly increased the movement of Na+/
K+ salt as well as water transport, ultimately leading to 
salinity stress tolerance in H. vulgare.

Moreover, overexpression of Ipomoea batata Myo-
inositol-1-phosphate synthase 1 (IbMIPs1) positively 
stimulates salt stress in transgenic plants. The con-
tents of Na, H2O2, and melon dehydrogenase (MDA) 
directly reduced, whereas the phosphatidic acid, inosi-
tol, proline, trehalose, ABA, K+, and Ca+ levels signifi-
cantly enhanced in transgenic I. batata under salinity 
stress [75]. In addition, introgression of the arginine 
decarboxylase gene into Lotus tenuis resulted to salin-
ity tolerance by upregulating proline content, which 
maintains membrane integrity. However, transgenic 
Triticum aestivum containing the Choline dehydroge-
nase gene of E. coli were highly tolerant to salt stress 
due to enhanced Glycine betaine content in transgenic 
plants. Comparatively, Gossypium hirsutum contains 
Choline monooxygenase genes derived from Atriplex 
sp. enhancing the level of Glycine betaine in transgenic 
plants, resulting to membrane integrity under salinity 
stress [42].

HSPs are mainly confined in various cell organelles 
and play a key role in protein homeostasis, prevent pro-
tein folding, refolding of unfolded polypeptides, etc. 
when exposed to salinity stress. These proteins reduce 
production of ROS and prevent from oxidative damage 
in response to salt stress. It also prevents degradation of 
chloroplast structure and reduction of chlorophyll con-
tent and photosynthetic content. Specifically, HSP70 
serves as an anti-apoptotic proteins and also induces 
programmed cell death in transgenic plants. The upreg-
ulation of HSPs helps in protection of photosynthetic 
machinery [76].

Small ubiquitin‑like modifier (SUMO) protein
SUMO proteins come under the small protein family. 
Post-translational modification of the SUMO protein 
is SUMOylation which is having a crucial role in tran-
scriptional regulation, stability of protein, various stress 
responses, apoptosis, and nuclear-cytosolic transport 
[77]. SUMO shows reversible nature in linkage onto 
substrate, and SUMO proteases have a crucial role in 
course of SUMOylation. OTS1 (overly tolerant to salt 1) 
and OTS2 (overly tolerant to salt 2) are the two SUMO 
protease which have been identified in the Arabidopsis 
thaliana to regulate responses to salinity stress [78]. The 
SUMO protein acts as a critical regulator in response to 
salinity stress in rice crop. The activity of SUMO pro-
tease has been demonstrated by the researchers for the 

orthologue OsOTS1 and reveals that it plays a crucial role 
for tolerance to salinity in rice crop [79].

Polyamines (PAs)
PAs are omnipresent, tiny, polycationic aliphatic low 
molecular weight molecules copiously strew in the 
plant kingdom and have vigorous biological activ-
ity [80, 81]. Polyamines are found to play significant 
roles in normal growth, seed germination, and devel-
opment such as cell proliferation regulation, morpho-
genesis, differentiation, breaking of dormancy, somatic 
embryogenesis, etc. [20, 82]. Most wonted polyamines 
are triamine spermidine (SPD), tetra-amine spermine 
(SPM), and diamine putrescine (PUT) [45, 83]. Out of 
these polyamines, diamine putrescine is the smallest 
one and is made from either ornithine or arginine [20, 
84]. External application of polyamines (PAs) mainly 
SPD and SPM results in the enhancement of photo-
synthesis and reactive oxygen metabolism which ulti-
mately improve the growth of the plant and alleviate 
the salt effect [85, 86]. Analogous results have also been 
attained in the seedling study of soybean crop [87]. 
Various metabolic pathways are found to be affected by 
the PAs namely SPD and SPM [88]. ABA and polyam-
ines in combination helps in reducing the effect of salt 
in seedlings of grape [89].

The alleviated activities of phospholipase C (PLC) 
and phospholipase D (PLD) were observed in rice and 
Arabidopsis, when exposed to salt stress. Biosynthesis 
of PAs stimulates downstream regulation of Ca2+. The 
Ca2+-independent ζ-type PLD affects the movements 
of root growth toward salt-prone sites. Additionally, PA 
itself influences the regulation and movement of auxin 
and abscisic acid, two phytohormones induced dur-
ing salt stress conditions. However, PAs also affect Na2+ 
transport via mitogen-activated protein kinase (MAPK6), 
that influences downstream regulation of NHX7/SOS 
[90]. In another study, rice MAPK6 regulates down-
stream activity of effector-like lectin RLK Salt I, Intol-
erance 1 and dephosphorylated through enzyme like 
protein phosphatase 2A and ultimately affect salt sen-
sitivity and ethylene homeostasis. More precisely, PAs 
elicit activation and localization of stress-related proteins 
and osmolyte, thereby simulating Na2+ transport and 
hormone signalling [62, 91].

Antioxidants
Oxygen is a statutory constituent in the plants and is 
related with some processes like oxidative phospho-
rylation, metabolism, and mitochondrial respiration 
to provoke energy. In the course of the metabolic pro-
cess, oxygen is transformed into ROS (reactive oxygen 
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species). ROS constitutes hydroxyl radical, hydrogen 
peroxide, singlet oxygen, etc., and concentration of these 
ROS enhance during salt stress resulting in the cell death, 
irreversible metabolic dysfunction, and cytoplasmic 
membrane damage [92].

SOD (superoxide dismutase) has the ability to elimi-
nate the large amount of superoxide anions from the 
cells and therefore acts as a defense system for salinity 
stress. These SODs are categorized into three classes. 
These classes are copper/zinc SOD (Cu/Zn-SOD), man-
ganese SOD (Mn-SOD), and iron SOD (Fe-SOD). The 
superoxide anions can dismutase into the H2O2 and O2 
with the help of SOD that eradicate the toxicity of super-
oxide [93]. CAT (catalase) is an enzyme which is pre-
sent in peroxisomes and it deplete the amount of H2O2. 
High empathy for hydrogen peroxide makes it different 
from APX (ascorbate peroxidase), and it entails a reduc-
tive substrate. Catalase (CAT) eliminates the hydrogen 
peroxide (H2O2) which is formed by light reaction [94]. 
APX is an important enzyme which helps in the elimina-
tion of hydrogen peroxide. APX eliminates the hydrogen 
peroxide (H2O2) from the cell which is produced in the 
chloroplast by Miller reaction [95]. External application 
of ascorbate to different plant species helps to alleviate 
the inauspicious effect of salt stress [96, 97]. In Arabi-
dopsis, salt stress–stimulating production of apoplastic 
reactive oxygen species (ROS) including hydroxyl radi-
cals, superoxide, singlet oxygen, and hydrogen peroxide 
influences oxidative damage and disrupts redox potential. 
The expression of Respiratory Burst Oxidase Homologs 
(RBOHs) genes is stimulating dynamically, and they lib-
erate salt-generated ROS waves. Under salt stress, these 
complicating ROS biosynthesis and production network 
are active constantly and play salt tolerance response [62]. 
Under salt stress, the amino acid concentration increased 
in two salt susceptible lines and three salt tolerance lines 
in Oryza sativa. Leucine, phenylalanine, isoleucine, and 
proline contents were enhanced among five lines. A 
recent study showed that the levels of α-aminobutyric 
acid, glycine, leucine, threonine, alanine, and serine glu-
tamate reduced, whereas citrulline, ornithine, aspartic 
acid, cysteine, ornithine, valine and proline levels were 
significantly enhanced in Cucumis sativa when exposed 
to salinity stress [98].

Similarly, flavonoids including quercetin 3,30,7-tri-
O-sulphate, cyanidine, quercetin, luteolin cyanidine 
3-arabinoside chloride were significantly enhanced in 
soyabean roots in salt stress [99]. Metabolomics and 
quantitative phosphoproteomic studies revealed that 
MYB 17 optimizes flavonoid metabolism in Glycine max 
under salinity stress conditions. According to Xu et  al. 
[100], activities of flavonoids associated such as flavonol 
synthase (AvFLS), flavanone 3-hydroxylase (AvF3H), and 

flavonoid 30-hydroxylase (AvF30H) genes were upregu-
lated in Apocynum venetum seedlings under salt stress. 
Similarly, in Zea mays, cell wall content was reported to 
have decreased lignin, cellulose, and matrix polysaccha-
rides in both shoot and root regions [101].

Dimethylsulfonium compounds contribute in the 
maintenance of protein integrity and ROS scavenging 
under salt stress. Glycine betaine as an osmoprotect-
ant significantly improves proline content so effectively, 
and enhanced glutathione peroxidase and glutathione-
S-transferase leads to the reduction of membrane per-
oxidase in different crop plants (rice and barley). Besides 
these, asparagine, sucrose, and glycine betaine contents 
significantly increased in maize shoots, whereas aspartic 
acid, malic acid, and γ-aminobutyric acid in roots when 
exposed to high salt stress [44, 102].

Recently, in Solanum lycopersicon, exposure of mela-
tonin enhanced plant growth, carbohydrate content, and 
chlorophyll content and alleviated the enzymatic activi-
ties of ribulose-1,5 bisphosphates and carbonic anhy-
drase; these were recorded under salt stress. Additionally, 
melatonin exposure improves osmoregulation by alleviat-
ing activities of proline, soluble sugars, and other stress-
dependant enzymes [62, 103].

According to Cen et al. [74], exogenous application of 
melatonin significantly improves H2O2 scavenging and 
increases antioxidant enzymes in Medicago sativa under 
salt stress conditions. Similar findings were reported by 
Quan et al. [104], that tolerant M. sativa exhibits reduc-
tion in accumulation of ROS as well as lower risk of 
membrane damage than salt-sensitive types. In another 
study, protein oxidation and lipid peroxidation occur in 
the apoplastic region when exposed to high salt condi-
tion. An enhancement in POX levels lowers H2O2 using 
different substrates, whereas activities of ascorbate 
peroxidase, catalase, and superoxide dismutase were 
increased in salt-tolerant M. sativa [105].

Kiani et al. [106] studied the antioxidant and protective 
role of polyphenol against salinity stress and the differ-
ential responses of genotypes using highly salt-tolerant, 
moderately salt-tolerant, and salt-sensitive genotypes. 
The vigorous antioxidant activity and robust accumu-
lation of phenolic compounds in the leaves of the male 
parent (Ae. cylindrica Host) and amphidiploid derivates 
would imply greater sophistication in genetic diversity 
for the evolvement of defense-oriented strategies to pre-
vent the accumulation of intracellular free radicals gener-
ated under salt stress.

Gene expression and salinity
Molecular responses to abiotic stress consist of a number 
of genes and signalling cascades which are highly regu-
lated and facilitate the crop plants to cope with the stress 
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conditions. Regulation is mostly at transcriptional, post-
transcriptional, and post-translation levels, but the main 
emphasis is at the transcriptional level which includes 
chromatin remodelling and upregulation and downregu-
lation of the coding regions of the gene [107, 108]. Salin-
ity tolerance is a composite and quantitative genetics 
process which is controlled by several number of genes 
[52, 109]. Several transcription factors as well as salt-
responsive genes have been recognized with the help of 
genomic and transcriptomic approaches (Fig. 2). Among 
the gene families, it has been found that the SOS gene 
family plays a crucial role in response to salt stress in ion 
homeostasis [110].

Physiological responses to stress exhibit recent pro-
gresses in molecular work which show the detection of 
several genes having a role in salinity stress (Table  2). 
Transcription factors are assessed as principal regula-
tors which have a key role in controlling the expression of 
genes. Dehydration responsive element binding (DREB), 
NAC, APETALA2 (AP2), C2H2, WRKY, and bZIP (basic 
leucine zipper protein) families of transcription factors 
consist a huge number of members for stress-responsive 
genes. The bZIP gene expression has been observed by 
the scientist showing the upregulation of genes in wheat 
variety which is salt sensitive, but there is a downregu-
lation of genes in the salt-tolerant variety of wheat [51]. 

Fig. 2  Diagrammatic representation of different “omics” approaches which are joined to each other at molecular level related with salinity stress 
tolerance in crop plant. Abbreviations used: SOS1 (Na+/H+ antiporter); NHX1 & NHX2 (Na+/H+ antiporter); CAX1 (cation/proton antiporter); HKT1, 
SOD2 (vacuolar Na+/H+ antiporter); VP-2 (vacuolar Na+/H+ antiporter); Srp (serine-rich protein); ABF2 (ABRE-binding bZIP transcription factor); 
DREB1A (transcription factor); ALFIN1 (zinc finger transcription factor); PP2B (signalling regulator); SOS3 (calcium-binding protein); PpDHNA 
(dehydrin protein); HVA1 (group 3 late embryogenesis abundant protein gene); Gly1 and Gly2 (glutathione-based detoxification of methyl glyoxal); 
AtGSK1 (homologue of GSKS3/shaggy-like protein kinase); Atnoa1 (impaired nitric oxide synthesis); AtSZF1 & AtSZF2 (CCCH-type zinc finger protein); 
SCABP8 (interacts with SOS2); Apo-Inv (apoplastic invertase); bet A (choline dehydrogenase), mtl1D (mannitol-1-phosphate dehydrogenase); CDH, 
BADH (glycine betaine synthesis); Cod A (glycine betaine synthesis); COX (choline oxidase (glycine betaine synthesis)); Mtl1D (mannitol-1-phosphate 
dehydrogenase); p5csF (proline synthesis); mt1D & Gut D (mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase); 
P5C5 (pyrroline carboxylate synthase (proline synthesis)); BADH-1 (betaine aldehyde dehydrogenase); Cu-Zn SOD (copper zinc superoxide 
dismutase); Mn SOD (manganese superoxide dismutase); Fe SOD (iron superoxide dismutase); GS2 (glutamine synthetase); ZmSPK1 (sucrose 
non-fermenting-1-related protein kinase) malate dehydrogenase; LEA (late embryogenesis abundant proteins; STH2 (B-box protein); STO (salt 
tolerance protein of Arabidopsis)
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The NAC family of transcription factors shows the over-
expression of genes in wheat and rice crop resulting in 
the salinity tolerance by the plants thus have key role in 
alleviating the effect of stress. Some of the transcription 
factors are modulated by various kinases which have a 
crucial role in the adaptation of plants to salinity stress. 
It has been reported that transcription factor OsRMC 
(Oryza sativa root meander curling) in rice crop coding 
for receptor-like kinases which is explained as a pessimis-
tic regulator for response to salt stress. It is also reported 
that the transcript level of gene OsERBP1 is not influ-
enced by salt, severe cold, or ABA significantly, but it is 
only regulated faintly by moderate cold and drought.

Breeding strategies
Many researchers have been studying breeding for toler-
ance to salt [120–122]. There have been many investiga-
tions in screening and breeding for salinity tolerance in 
crop plants, and the subject has been reviewed by sev-
eral authors [123–126]. With the advancement in genetic 
inheritance, evaluation techniques, software techniques, 
molecular markers, modification of germplasm and map-
ping, it facilitates the improvement in salt tolerance and 
other abiotic stresses [127]. Majority of the plant pro-
cesses which are having a role in salinity tolerance show 

continuous diversity, have a little inheritance, and are 
also affected by environmental factors [26, 121].

Mutation breeding
Mutation breeding, a tool for creating genetic variation, 
is useful for crop improvement. A key point in muta-
tion breeding is identification of individuals with a target 
mutation involving two major steps: screening and con-
firmation of mutants [128]. In mutation breeding, the 
seeds are treated with mutagen (agents such as gamma 
rays, chemical mutagens, X-rays, and fast neutrons) and 
grown further for segregation and the plants with useful 
traits are selected to grow next generation. Multi-loca-
tion trials are conducted for evaluation and released as 
a new variety with use [129]. Studies have been done to 
improve the salinity tolerance in plants. There is an evi-
dence of salt oversensitivity which is achieved through 
mutation breeding in barley crop that show improvement 
in salinity tolerance through ion homeostasis. There is an 
interpretative difference between the salt-tolerant geno-
types of barley (i.e., M4-73-30 and its wild type cv). These 
two genotypes show the difference in the expression of 
HVA (202-fold), HvSOS3 (31-fold), HvSOS2 (24-fold), 
and HvSOS1 (105-fold) genes in the roots of barley. There 
is more Na+ accumulation in wild-type barley sample of 
shoot than the mutant type. This is because of the less 

Table 2  Involvement of genes in functional aspects and mechanism of salinity tolerance

Abbreviations used: SOS1 salt overly sensitive 1, SOS2 salt overly sensitive 2, SOS3 salt overly sensitive 3, ETF1 ethylene response factor1, HVP hordium vulgare vacuolar 
H+ -pyrophosphatase, GLP-1 glucagon-like peptide-1, TIP-1 tip elongation protein 1, Rd29A response-to-dehydration 29A, OsCLCa Oryza sative chloride channel-a, 
TaWRKY transgenic tobacco WRKY

Sr. no. Genes Function during salt stress Mechanism of action References

1 SOS1 Transport of sodium ion from root to shoot of the 
plant

The protein of SOS1 gene acts as antiporter of 
plasma membrane Na+/H+.

[111]

2 SOS2 Protein kinases C terminal domain of SOS2 associates with salt stress 
evoked Ca2+ via NAF domain (also called as FISL 
motif ).

[112]

3 SOS3 Calcium-binding protein SOS protein as well as Ca2+ behave as intonation of 
intracellular Na+ homeostasis.

[113]

4 ERF1 (SERF1) Improve salinity tolerance SERF1 gene attaches with the promoter region of 
MAP 3K6, MAPK5 to show tolerance against salinity 
stress.

[114]

5 HVP1 and HVP10 Expressed during salinity stress These two genes express itself in the presence of 
ABA in Hordeum vulgare.

[115]

6 TIP1 and GLP1 Expressed upon salt stress Treatment of ABA on the wheat plant shows the 
expression of these genes against salt stress.

[116]

7 rd29A Act with DREB2A transcription factor This transcription factor DREB2A is induced by salt 
stress in the Arabidopsis plant.

[117]

8 TaWRKY2, TaWRKY19 Improved salt tolerance Overexpression of these genes improve salt toler-
ance by enhancing the downward expression of 
genes RD29B and STZ.

[118]

9 OsCLCa Decrease in the salt concentration in the rice plant This gene acts through the leaves and roots of 
the plant, and there is decrease in the transcript 
accumulation in the variety of rice IR29 which is salt 
sensitive.

[119]
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transfer of sodium ions from root to shoot in the mutant 
type which is salt tolerant [130]. Lethin et  al. [131] 
developed a mutant population of wheat with the aim 
to improve salinity tolerance in wheat. They used Bang-
ladeshi variety BARI Gom-25 which was semi-tolerant 
to salinity and treating it with EMS (ethyl methanesul-
fonate) and then compared it with local wheat varieties. 
After screening, they identified that out of 1676 lines of 
wheat, 70 lines manifested enhanced salinity tolerance. 
Results indicated that the mutant lines showed a good 
salinity tolerance than the local cultivars [131].

Wild relative exploitation
Interspecific hybridization has a crucial role in ameliorat-
ing the crop plant performance for tolerance to several 
abiotic stresses [132, 133]. Wild relatives of crops are uti-
lized as a source in biotic as well abiotic stress tolerance 
to increase the crop productivity; however, it requires 
specialized methods to do so, such as embryo rescue. The 
salt tolerance source identification as well as the involve-
ment of a candidate gene is a good example found in wild 
rice germplasm [134–136]. Oryza coarctata, which is a 
halophytic relative of wild rice, has been studied for tol-
erance to salt for decades for identification of a way in 
which it can be utilized in salt tolerance improvement of 
cultivated rice [136, 137]. Colmer et al. [132] have reap-
praised the scenarios for salt tolerance improvement in 
wheat crop by using wild relatives of wheat. Genetic and 
physical maps as well as genome sequences of wild rela-
tives of some crops are becoming accessible [138, 139].

Double haploid (DH)
Double-haploid production through Anther culture has 
emerged as an exciting tool for crop improvement hav-
ing advantages of shortening of the breeding cycle, high 
selection efficiency, homozygosity fixation, and expres-
sion of recessive alleles suitable for breeding. Diploidi-
zation of haploid genomes can be produced either by 
artificial genome doubling (colchicine treatment) or 
spontaneous genome doubling (endomitosis: chromo-
some doubling without nucleus division). DH technol-
ogy was found to be efficient for fixation of favorable 
alleles controlling agronomically important traits. In 
rice crop, DH techniques can be utilized for the devel-
opment of new varieties from photosensitive rice geno-
types [140]. Double haploids could emerge as a powerful 
tool in mapping of QTLs controlling quantitative traits. 
QTLs linked with sheath blight of rice were identified in a 
DH population exhibiting resistance against the disease. 
More than 100 rice breeding varieties have been devel-
oped in India, South Korea, the USA, China, and Japan 
[141]. DH technique produces the homozygous lines of 
haploid plants by chromosome doubling from sperms or 

egg cells. Several reviews on DH technology provide an 
insight to the plant breeders in crop improvement as it 
has wider application in breeding and genetic study [142, 
143]. Al-Ashkar et  al. [7] detected salt tolerance of 15 
lines of wheat which was developed using DH technique. 
They analyzed the biochemical as well as physiological 
parameters and then compared it with wheat check culti-
var sakha 93 which is salt tolerant [7].

Marker‑assisted breeding (MAB)
The marker-based selection is an indirect selection pro-
cess in which the trait of interest is selected on marker 
basis rather than phenotypic selection. It is the applica-
tion of molecular biotechnologies, generally molecu-
lar markers combined with linkage maps and genomics 
for the improvement of plant and animal traits that are 
based on genotypic assays. By increasing the number of 
markers associated with QTL, could greatly increase 
the success rate [144, 145]. For efficient marker selec-
tion, marker to be used should be close enough to the 
gene of interest. Molecular markers have become an 
integral part of the plant breeding and classical genet-
ics. The main reason behind it is that molecular markers 
made it possible to do selections and breeding for any 
trait. Earlier, development of molecular markers, link-
age map construction, QTL mapping, and fine mapping 
of precise gene were considered to be labor-intensive 
and time-consuming processes. But with the advance-
ment of next-generation sequencing (NGS), it has made 
the development of molecular markers, like simple 
sequence repeats (SSR), insertion-deletions (InDels), 
and single-nucleotide polymorphisms (SNPs) easier. The 
development of these markers has further facilitated 
the development of high-density genetic maps, which 
in turn enabled the mapping of target genes. The detec-
tion of genetic variation for important agronomic traits 
is also done using molecular markers. Molecular mark-
ers enabled the identification of appropriate parents for 
molecular breeding and also made it possible to select 
the desirable offspring at the early developmental stages 
[146, 147]. To alleviate the effect of salt on production of 
rice, new varieties which are salt tolerant are developed 
using marker-assisted breeding [148–150] and conven-
tional breeding methods [151–153]. MAB is a rapid and 
accurate method of breeding for introgression of lines 
or genes. It allocates selection in every breeding cycle 
for the transfer of gene in a precise manner. MAB also 
permits restricting the donor region thereby eluding link-
age drag [148]. Marker-assisted breeding (MAB) was for-
tunate in the development of salinity tolerance lines in 
rice [148, 149, 154–158]. In rice, marker-assisted breed-
ing has been utilized in pyramiding of QTLs which con-
trol tolerance against salinity, submergence, as well as 
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drought [6]. Pushpavalli et al. [159] studied the chickpea 
genotypes for salinity tolerance and identified two yield-
related QTLs in the key genomic region. Comparison 
with already published chickpea genetic maps showed 
that these regions conferred salinity tolerance across two 
other populations, and the markers can be deployed for 
enhancing salinity tolerance in chickpea.

Genetic engineering for salt tolerance in plants
Salinity tolerance is predominantly supervised by numer-
ous genes as well as various physiological mechanisms. 
Genes which are related to salt tolerance provides a pre-
sumed postulation of the stress signal network for ampli-
fication and enhancing the tolerance of plants to various 
stresses [160]. The technology of genetic transformation 
facilitates scientists to attain the transfer of gene in an 
anticipatory and accurate manner. That is why, scien-
tists’ concern is on the plant transformation in order to 
improve the salt tolerance by operating the osmoprotect-
ant biosynthetic channel for the accumulation of mole-
cules which perform by narrowing the lipid peroxidation, 
function and structure of protein, ROS scavenging, etc. 
[161, 162]. Studies on gene expression by employing 
constitutive promoters furnish restricted biological 

information as compared with the use of cell type-spe-
cific promoters or inducible promoters. That is why engi-
neering for salt-tolerant crops could be done by miRNA 
overexpression, using synthetic biology basis in order to 
enhance strategies for genetic engineering, maintenance 
of hormone homeostasis to eschew pleiotropic effects, 
complete knowledge of post-translational modifications, 
fortunate fine-tuning of response to stress by engineering 
innovative regulatory targets [163]. Genes which are used 
for genetic engineering of salt-tolerant crops include 
water channel proteins, detoxifying genes, dehydrins, 
osmoprotectants, ion transporter and molecular chaper-
ons (Table 3). In transgenic plants, S-adenosylmethionine 
decarboxylase (SAMSC) plays an important role in the 
biosynthesis of PA, and its activities are reported to be 
enhanced under different salt treatments. Ectopic expres-
sion of SAMDC-like genes in rice enhanced the level of 
spm and spd that increased salt tolerance. In addition, 
the OstA and OtsB, two bifunctional fusion genes derived 
from E. coli in O. sativa are reported to increase treha-
lose content, amino acids under salt stress. According 
to Li et  al. [91], the overexpression of Oryza sativa tre-
halose phosphate synthase (OsTPS1) shows increased 
trehalose synthesis and improved salt tolerance in 

Table 3  Involvement of genes obtained from different crops and their role in stress tolerance

Sr. no. Gene Source of gene Product of gene Target plant Effects References

1 ABP9 Zea mays Transcription factor Arabidopsis Salt, cold and drought tolerance [164]

2 TaMYB2A Triticum aestivum Transcription factor Arabidopsis Salt, cold and drought tolerance [165]

3 TaSRG Triticum aestivum Transcription factor Arabidopsis Salt tolerance [166]

4 ThNHX1 Thellungiella halophila Na+/H+ antiporter Arabidopsis Salt tolerance [167]

5 SsNHX2 Suaeda salsa Na+/H+ antiporter Arabidopsis Salt tolerance [168]

6 PutHKT2,1 Puccinellia tenuiflora K+ transporter Arabidopsis Salt tolerance [169]

7 ZmSIMK1 Zea Mays Mitogen-activated protein kinase 
(MAPK)

Arabidopsis Salt tolerance [170]

8 HvCBF4 Hordeum vulgare CBF transcription factor Rice Increased drought, cold and salinity 
tolerance

[171]

9 OSNAC5 Oryza sativa Transcription factor Rice Salt tolerance [172]

10 CgNHX1 Chenopodium glaucum Vacuolar Na+/H+ exchanger Rice Increased salt tolerance [173]

11 PgNHX1 Pennisetum glaucum Vacuolar Na+/H+ antiporter Rice Enhanced salt tolerance [174]

12 OsKAT1 Oryza sativa Shaker family K+ channel Rice Salt tolerance [175]

13 OsBADH Oryza sativa (Indica) Betaine aldehyde dehydrogenase Rice (Japonica) Enhanced salt tolerance [176]

14 PcINO1 Porteresia coarctata Myo-inositol 1-phosphate synthase Rice, brassica Salt tolerance [177]

15 MIPS Spartina alterniflora Myo-inositol 1-phosphate synthase Rice, tobacco Improved salt tolerance [178]

16 AtNHX1 Arabidopsis thaliana Na+/H+ antiporter Maize Salt tolerance [179]

17 BADH Suaeda liaotungensis Betaine aldehyde dehydrogenase Maize Salinity tolerance [175]

18 H+-PPase Thellungiella halophila H(+)-pyrophosphatase Cotton Salt tolerance [180]

19 SbGSTU Salicornia brachiata Glutathione S-transferase Tobacco Increased salt tolerance [181]

20 AtNHX1 Arabidopsis Vacuolar Na+/H+ antiporter Groundnut Enhanced drought and salt toler-
ance

[182]

21 ThIPK2 Thellungiella halophila Inositol poly-phosphate kinase Brassica napus Increased abiotic stress tolerance [183]

22 PcSrp Porteresia coarctata Serine-rich-protein Finger millet Improved salt tolerance [184]
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transgenic plants. Similarly, proline and trehalose content 
were enhanced and upregulation of stress-related genes 
(responsive to ABA (RAB16C), early light-inducible pro-
tein (ELIP), water stress-inducible protein (WSI18), and 
heat shock protein (HSP70), in transgenic rice.

Novel Approaches in improving salt tolerance
CRISPR/Cas9 technique
CRISPR/Cas9 is an important gene editing tool in which 
the cas9 protein along with guide RNA from a complex 
for recognition of target sequences. In the system, the 
target DNA is cleaved by the Cas9 protein which con-
sists of six domains namely REC1, REC2, Bridge Helix, 
HNH, RuvC, and PAM interacting. The Rec1 domain 
helps in binding the guide RNA, whereas the bridge 
helix (arginine rich) initiates the cleavage after bind-
ing of target DNA. The cas9 protein only activates when 
bind with guide RNA. The guide RNA is mainly com-
posed of single-stranded RNA with 1 tetraloop and 2 or 
3 stem loops, and it must have a 5’ for complimentary 
with target DNA sequence. The cas9 protein searches for 
target DNA for PAM sequences. The protein melts the 
upstream bases of the PAM and pair with them. In the 
case of exact target sequence, RuvC and HNH nuclease 
play a role to cut the target DNA sequence which then 
followed by the Watson-crick pairing between the DNA 
cas9sgRNA complex and guiding sequence [185, 186]. 
CRISPR/Cas9 is a precise, systematic, and appropriate 
method of genome editing which was developed recently 
[187]. Nowadays, the CRISPR/cas9 technique has been 
utilized extensively in several crops like maize [188, 189], 
wheat [190, 191], and sorghum [192, 193]. With the help 
of the CRISPR/Cas9 technology, numerous genes in rice 
crop such as OsHAK1, OsERF922, OsPDS, TMS5, and 
Badh2 have been knocked out, and predicted results of 
phenotype have been obtained [194–197]. Some studies 
on the elite rice show direct genome editing of cultivar 
using the CRISPR/Cas9 technique. The gene OsERF922 
which is an ERF transcription factor was mutated by 
this technique to increase the blast resistance in variety 
Kuiku131 having normal phenotype [190]. Japonica rice 
cultivar WPB106 was resistant to drought, having good 
cooking quality and early maturity but sensitive to salt. 
Its tolerance to salt has been improved by using CRISPR/
cas9 technology where they used the Cas9-OsRR22-
gRNA expression vector which knocks out the OsRR22 
gene. Their results based on this technology illustrated 
that OsRR22 has an auspicious prospective to advance 
the amelioration of salinity tolerance in rice breeding 
[198]. In a study in upland cotton (Gossypium hirsutum) 
a CRISPR/Cas9-mediated pooled sgRNA assembly was 
optimized providing a platform in sgRNA designing for 
targeting the multiple genes. The targeted genes were 

successfully edited using CRISPR/Cas 9 technique which 
were related to male sterility in cotton. A total of 112 
plant development-related genes were knocked out using 
this system [199]. Chen et al. [200] successfully generated 
the first report of generating high-oleic and nontrans-
genic mutant in allotetraploid upland cotton by knockout 
of GhFAD2 genes through CRISPR/Cas 9 editing system. 
Findings in upland cotton suggested that GhFAD2-1A/D 
is the key gene which determines the fatty acid composi-
tion of cottonseed oil.

Hyperspectral imaging (HI)
Also called imaging spectroscopy, it tells us about how 
the light interrelate with the materials which measure the 
quantity of light transmitted, reflected, or emitted [201]. 
Nowadays, various works emphasize on environmen-
tal stress analysis in crops and its related diseases [202, 
203]. Hyperspectral imaging is a new technique used to 
evaluate tolerance to salt stress in wheat crop. There are 
three methods namely NRD (normalized reflectance dif-
ference) curve, posterior stability, and MDPA (minimum 
difference of pair assignments) which were used to scru-
tinize hyperspectral images of the lines of wheat crop. 
They used the four lines of wheat crop namely Kharchia, 
CS, Co (CS), and Sp (CS). It was concluded that among 
the four lines, kharchia is more tolerant to salt than the 
others [204]. HI is a technique used for the identification 
of material via imaging system providing high spectral 
resolution when compared with multispectral system, 
namely Landsat multispectral scanners. This system pro-
vides an insight for the improved identification of surface 
materials especially minerals in soils. HI system is based 
on the principles of red–green–blue (RGB) image in 
which an image is presented as a matrix with I rows and 
J columns providing the I*J dimensions which determine 
the size of the image. In this system, pixels are fact point 
measurements, instead of squares, in which each entry in 
the matrix represents with one pixel [205]. A pixel in an 
image represents the real space position which is absorb-
ing and reflecting a light across the electromagnetic 
spectrum. In this system, the reflected light is counted 
as a number which indicates the intensity. The low inten-
sity of the wavelength is represented by the black image, 
while high intensity with white and one wavelength 
showed greyscale image. The color bands lie within the 
electromagnetic spectrum of light (400–800 nm) which 
corresponds to blue, green, and red visible lights [206].

Genome‑wide association studies (GWAS)
GWAS, an important tool, provides an insight in the 
identification of genotype–phenotype association and 
is mainly focused on linkage disequilibrium and recom-
bination, and singlefeature polymorphism. In over 1000 
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GWAS studies on recombination and linkage disequilib-
rium [207], single-feature polymorphism [208], patho-
gen resistance, and early flowering [209] have now been 
published in plants [210, 211]. GWAS analysis includes 
the collection of data based on genotypic and phenotypic 
information in which genotypic data can be collected 
with the help of microarrays or whole genome sequenc-
ing (WGS) or whole exome sequencing (WES). Further, 
quality control is a major step in the analysis for the dele-
tion of bad single-nucleotide polymorphisms (SNPs) 
followed by imputation using matched reference popu-
lations from repositories. Genetic association tests are 
conducted for each trait using various models (linear or 
logistic regression). In silico analysis of GWAS is carried 
out for in silico fine-mapping, gene to function mapping, 
genetic correlation, pathway analysis, and SNP to gene 
mapping [212]. In a study conducted on Oryza sativa 
using GWAS mapping revealed the novel QTLs at the 
seedling stage for salinity stress tolerance. GWAS analy-
sis identified 26 QTLs after screening of 179 rice lan-
draces genotyped with 21,623 SNP markers for salinity 
stress tolerance when treated with 100 mM NaCl treat-
ment. From the identified QTLs, 10 QTLs were found to 
be associated with different traits [213]. QTL [214] analy-
ses generally point to particular chromosomal subre-
gions, while the current developed GWASs can recognize 
accurate location of chromosomes with the intention to 
elucidate particular genes or polymorphism within the 
encoding regions [215, 216]. GWAS studies divulge the 
candidate genes which underlie characters namely flow-
ering time [217], morphology of root [218], size, shape 
and length of grain [216], and yield [219] in rice crop. 
Few studies are there which have applied the technique 
of GWAS to elucidate the molecular mechanism which 
induces tolerance [220]. GWAS analyses deliver light on 
phenotype and protein function when employing suitable 
population and genotyping of high resolution [8, 221]. 
GWAS is used to recognize markers for salt tolerance in 
rice crop. In this study, they apply GWAS to a diversity 
which show rice accessions throughout the globe, and 
these accessions show genetic variability in a high degree. 
A total of 950 genes were recognized belonging to several 
functional categories. These genes were overrepresented 
in Gene ontology (GO) classification of transcription 
regulation, hydrolase activity, and cation transport [222, 
223].

Conclusive remark and future prospects
On the basis of the physiological, biochemical, as well 
as molecular aspects, salinity stress tolerance has been 
extensively studied. Recent studies mainly focused on 
the molecular basis which acquires more scrutiny. The 
gene’s identification furnishes information regarding the 

mechanisms which are directly influenced by extracel-
lular cues. Studies on salinity tolerance elucidated that 
several salinity responses, osmotic regulation, antioxi-
dant metabolism, hormone metabolism, and signalling 
pathways play a crucial role in stress tolerance. Moreover, 
new emerging approaches of plant breeding and biotech-
nologies such as GWAS, mutational breeding, marker-
assisted breeding (MAB), double haploid production 
(DH), hyperspectral imaging (HI), and CRISPER/Cas, 
serve as engineering tools for dissecting the mechanism 
in more depth. However, understanding of these mecha-
nisms creates a loop of concept for breeders with more 
focus on plant performance under saline conditions. 
Moreover, pathways and routes in relation to salinity 
unravel different components that give exciting outcome 
to engineer plants for the search of novel salinity resist-
ance genes.
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