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Abstract

Background: Jewel orchid is the common name of several orchid species which can be alike in morphological
characteristics, but variable in medicinal properties. At present, two DNA barcode loci, namely, maturase K (matK)
and ribulose 1,5-biphosphate carboxylase (rbcL), are intensively utilized for plant identification. However, the
discrimination effectiveness of these loci is variable among plant species. This study was carried out to compare the
identifying efficacy of these two loci on jewel orchid population collected throughout Vietnam.

Results: The results revealed that 21 jewel orchid accessions studied were segregated into four different species
with significant variations. The discrimination power of matK and rbcL markers in this jewel orchid study displayed
different efficiency level. The rbcL gene has higher distinguishing potential than either matK gene alone or the
combination of both genes.

Conclusion: The findings of this project could provide valuable information that is necessary for classification, plant
origin identification, breeding, and conservation program of jewel orchid in Vietnam.
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Background
The term “jewel orchid” refers to several species of or-
chid of velvety brocade-like leaves with beautiful veins.
They belong to a diverse plant group of Orchidaceae
family which spread widely in tropical regions of Asia
and Australia, and have high medicinal and economic
values. As traditional medicine, jewel orchid is used to
treat chest and abdominal pain, diabetes, nephritis, fever,
hypertension, liver, and pleurisy. Several chemical com-
pounds have been identified by advanced analytics
methods to show strong biological activity which can
improve the lung and liver conditions [1].

Several jewel orchid species may share nearly similar
morphological characteristics although their economic
and pharmaceutical values are very different. Therefore,
an accurate classification of this orchid group of high
medicinal properties as a basis for development and con-
servation is urgently needed. However, the current plant
identification is still using the traditional classification
method: rely on the morphological characteristics of
leaves, flowers, and stems. There are some problems en-
countered from applying this method, such as nearly
identical external morphology features, variable poly-
morphisms between adult and juvenile stages, and envir-
onmental factors as well as the plant growth
development phases; all leads to inaccuracy. Also, mor-
phological identification cannot be performed properly if
the specimen has been damaged or has been subjected
to preliminary processing. Applying the incorrect species
with different pharmaceutical compounds as herbal
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medicine would reduce the effectiveness of the medicine,
and could be harmful to the patients.
Recently, DNA barcode is increasingly becoming a

more popular method to identify species, utilizing reli-
able DNA regions. It is used worldwide to serve the clas-
sification, biodiversity assessment, and genetic resource
conservation, and also to overcome the limitation of
morphology-based taxonomy. As a relatively new tech-
nique, DNA barcode uses the standardized genomic re-
gions to distinguish among species and has been used
intensively for identifying at species level. In animals, the
mitochondrial cytochrome oxidase I (COI) gene was
generally used for phylogenetic study. However; the
same gene cannot be employed in plants, as it lacks suf-
ficient variations due to low mutation rate [2]. For
plants, other gene regions have been utilized as DNA
barcodes, such as nuclear ribosomal internal transcribed
space (ITS) [3, 4], also rbcL, matK, atpF-atpH, psbK-
psbI, and trnH-psbA [5–7].
In Orchidaceae family, DNA barcode has been used in-

tensively to species identification or classification. Kim
and colleagues developed DNA barcodes for 89 orchid
species in Korea [5]. A study using rbcL, matK, ITS, and
trnH-psbA barcodes was also effective for identification of
endangered orchid in Paphiopedilum species in Malaysia
[7]. In Vietnam, Huynh and colleagues employed up to
nine DNA barcodes to discover the species diversity of six
jewel orchid accessions [8]. A large study in China has
screened 1698 accessions of 184 Dendrobium species with
11 candidate barcodes, and then proposed that due to the
easiness in amplification and sequencing, the primer sets
suitable for Dendrobium orchid study were ITS, ITS2,
matK, rbcL, and trnH-pbsA [6].
Among several barcode loci, matK and rbcL were pro-

posed as the preferred plant barcoding loci by The Con-
sortium for the Barcode of Life (CBOL) [9].
Nevertheless, the ideal locus for DNA barcoding of
plants remains debatable, since some loci are efficient
for some specific taxonomic groups only and the species
discrimination of these genes varies among plant species.
When studied Aquilaria genus, Thitikornpong and col-
leagues discovered more variation in matK gene in com-
parison to rbcL gene [10]; similar result has also been
found in phylogenetic analysis of Dalbergia [11]. A vari-
ation of species resolution in different vascular plant
species was exhibited by both rbcL and matK [12],
whereas rbcL has better performance in teak, black rose-
wook, ben teak [13], and also liverwort [14]. Therefore,
the purpose of this study was to evaluate the species
resolution ability of matK and rbcL loci in 21 accessions
jewel orchid collected in Vietnam. The obtained results
will be useful for genetic conservation and breeding pur-
poses. Furthermore, the markers that are found to be
tightly linked to specific accessions will also pave the

way for classification, conservation, and protection of
this plant group.

Methods
A total of 21 jewel orchid accessions were collected from
different places in Vietnam (Fig. 1 and Table 1). The leaf
samples were dried in silica gel and stored at room
temperature until usage.
DNA was extracted with CTAB method (cetyl tri-

methyl ammonium bromide) as described by Doyle and
Doyle [15]. PCR reaction for matK and rbcL regions was
amplified using the composition as follows: 7.5 μL 2X
Mytaq Mix (Bioline, UK), 20 ng DNA, 0.2 μM primer
(either matK 390F: 5′-CGATCTATTCATTCAATA
TTTC-3′; and 1326R: 5′-TCTAGCACACGAAAGTCG
AAGT-3′ [16] or rbcL: cF: 5′-TGAAAACGTGAATTCC
CAACCGTTTATGCG-3′; cR: 5′-GCAGCAGCTA
GTTCCGGGCTCCA-3′ [17], and PCR water (Sigma-
Aldrich, USA) to final volume of 15 μL. The PCR reac-
tion conditions were as follows: initial denaturation at
95 °C for 2 min; then 35 cycles of 30 s at 95 °C, 30 s at
55 °C, and 1 min at 72 °C. Finally, an additional of 5 min
was continued at 72 °C to complete the reaction. All re-
actions were carried out in SureCycler 8800 Thermal
Cycler (Agilent, USA). The PCR products were electro-
phorized on 1% agarose gel using 1 kb DNA marker
(Bioline, UK) to confirm the amplification length. The
PCR products were then purified by ISOLATE II PCR
and Gel Kit (Bioline, UK) and sequenced using the Big-
DyeTM Terminator Cycle Sequencing Kit (Applied Bio-
system, USA). The products were next run on ABI 3100
DNA analyzer (Applied Biosystem, USA). The obtained
electropherograms were edited using FinchTV (Digital
World Biology Products, USA). Only the sequences with
scores higher than 20 PHRED score were considered for
further analysis. Sequences were trimmed at both ends
of the alignment in order to avoid too many missing
data at the ends. The obtained sequences were submit-
ted to GenBank (NCBI, USA) and are publicly accessible
under the accession numbers listed in Table 1.
For species identification, the DNA sequences were

identified with Barcode of Life Database (BOLD) system
in the function of rbcL and matK for plants. Similarly,
the homology of matK and rbcL sequences was checked
simultaneously with Basic Local Alignment Search Tools
(BLAST) of NCBI using default parameters. The identifi-
cation was deemed correct if the highest identity per-
centage of searched sequences was derived from
expected species or genus. On the other hand, the iden-
tification was considered ambiguous when the highest
identity percentage of searched sequences was not de-
rived from expected species or genus or family [18].
DNA sequences were then aligned with the ClustalW al-
gorithm, implemented in MEGA7 package [19], using
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Fig. 1 Targeted areas for collecting jewel accessions in this study (sample numbers collected in each location are indicated in parentheses)

Table 1 Jewel orchid samples collected for genetic characterization and the corresponding accession numbers

No. Sample code Collection site Accession number for matK gene Accession number for rbcL gene

1 HG Ha Giang Province MW241553 MW241574

2 LS Lang Son Province MW241554 MW241575

3 HN Ha Noi City MW241555 MW241576

4 NB1 Ninh Binh Province MW241556 MW241577

5 NB2 Ninh Binh Province MW241557 MW241578

6 TH Thanh Hoa Province MW241558 MW241579

7 QN Quang Ngai Province MW241559 MW241580

8 BD1 Binh Dinh Province MW241560 MW241581

9 BD2 Binh Dinh Province MW241561 MW241582

10 GL Gia Lai Province MW241562 MW241583

11 PY1 Phu Yen Province MW241563 MW241584

12 PY2 Phu Yen Province MW241564 MW241585

13 PY3 Phu Yen Province MW241565 MW241586

14 DL1 Dak Lak Province MW241566 MW241587

15 DL2 Dak Lak Province MW241567 MW241588

16 DL3 Dak Lak Province MW241568 MW241589

17 BP Binh Phuoc Province MW241569 MW241590

18 LD1 Lam Dong Province MW241570 MW241591

19 LD2 Lam Dong Province MW241571 MW241592

20 LD3 Lam Dong Province MW241572 MW241593

21 HCM Ho Chi Minh City MW241573 MW241594
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the default parameters. Evolutionary divergence for each
data set and pattern of nucleotide substitution were per-
formed on the same software. Evolutionary trees were
constructed based on two methods: maximum likelihood
(ML) and neighbor joining (NJ), each represents for
discrete character methods and distance methods, re-
spectively [20]. The reliability of phylogenetic analysis
was validated by 1000 bootstrap replicates. Bootstrap
support (BS) was categorized as strong (> 85%), moder-
ate (70-85%), weak (50-69%), or poor (< 50%) [21].
In order to estimate species resolution for a given bar-

code locus, we considered the species were resolved if
conspecific individual grouped into one monophyletic
branch in the phylogenetic tree with strong bootstrap
support. On the other hand, if conspecific individuals
were separated in paraphyletic branches, then it was
considered as identification failure [22]. The correlation
between the matK and rbcL similarity matrices were
computed by Mantel test at a significant level of 5% in
1000 simulations by using program Mantel test of
Microsoft Excel 2010 [23].

Results
Species identification
In this study, both matK and rbcL sequences were suc-
cessfully sequenced. For homologous identification, only

sequences of minimum 80% percentage identity were
considered. Using BLAST, both matK and rbcL genes
were showing identical results as described in Table 2.
Using BLAST for searching homology, the results of

matK and rbcL are identical. On the contrary, the results
from BOLD were totally different and the returned spe-
cies from this database were not corresponding to those
of BLAST. Furthermore, the obtained results from matK
and rbcL by BOLD were also not consistent. MatK se-
quences show higher similarity to that of BLAST with 7/
21 accessions with identical results. Nevertheless, none
of returned results from rbcL was identical to that of
BLAST. Even more, several returned identifications were
completely irrelevant to jewel orchid. Limited accessions
were shown as belonged to other genus in Orchidaceae
family, such as Platythelys querceticola or Cephalanthera
falcata forma. In particular, LD1 and HCM accessions
were shown as belonged to two genuses in Cucurbita-
ceae family: Nothoalsomitra suberosa and Cucumis sati-
vus, respectively.

Estimation of sequence divergence
The divergence among sequences is slightly variable
(Supplementary table S1). Among which, the divergence
value of matK and rbcL regions was ranged from 0 to
0.14 and from 0 to 0.05, respectively. In matK region,

Table 2 Searching result of matK and rbcL gen on Genbank and BOLD databases

No. Sample code BLAST with matK BOLD with matK BLAST with rbcL BOLD with rbcL

1 HG Goodyera schlechtendaliana Goodyera oblongifolia Goodyera schlechtendaliana Platythelys querceticola

2 LS Ludisia discolor Ludisia discolor Ludisia discolor Platythelys querceticola

3 HN Goodyera velutina Ludisia discolor Goodyera velutina Cephalanthera falcata forma

4 NB1 Ludisia discolor Ludisia discolor Ludisia discolor Platythelys querceticola

5 NB2 Ludisia discolor Platylepis polyadenia Ludisia discolor Platythelys querceticola

6 TH Goodyera velutina Anoectochilus formosanus Goodyera velutina Cephalanthera falcata forma

7 QN Ludisia discolor Zeuxine nervosa Ludisia discolor Platythelys querceticola

8 BD1 Anoectochilus pingbianensis Ludisia discolor Anoectochilus pingbianensis Platythelys querceticola

9 BD2 Ludisia discolor Anoectochilus roxburghii Ludisia discolor Platythelys querceticola

10 GL Goodyera velutina Zeuxine nervosa Goodyera velutina Cephalanthera falcata forma

11 PY1 Ludisia discolor Ludisia discolor Ludisia discolor Platythelys querceticola

12 PY2 Anoectochilus roxburghii Anoectochilus formosanus Anoectochilus roxburghii Nothoalsomitra suberosa

13 PY3 Ludisia discolor Zeuxine nervosa Ludisia discolor Platythelys querceticola

14 DL1 Ludisia discolor Ludisia discolor Ludisia discolor Platythelys querceticola

15 DL2 Ludisia discolor Zeuxine nervosa Ludisia discolor Platythelys querceticola

16 DL3 Ludisia discolor Ludisia discolor Ludisia discolor Platythelys querceticola

17 BP Anoectochilus pingbianensis Goodyera pubescens Anoectochilus pingbianensis Platythelys querceticola

18 LD1 Anoectochilus roxburghii Anoectochilus formosanus Anoectochilus roxburghii Nothoalsomitra suberosa

19 LD2 Anoectochilus pingbianensis Zeuxine nervosa Anoectochilus pingbianensis Platythelys querceticola

20 LD3 Anoectochilus pingbianensis Anoectochilus roxburghii Anoectochilus pingbianensis Platythelys querceticola

21 HCM Anoectochilus roxburghii Anoectochilus roxburghii Anoectochilus roxburghii Cucumis sativus
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PY2 accession showed a higher difference from those of
other species, which vary from 0.09 to 0.14; whereas
rbcL from HG accession showed the highest divergence,
which vary from 0.0 to 0.05. The substitution of different
bases in analyzed regions was evaluated on entire codon
positions (1st+ 2nd + 3rd nucleotide) and was displayed
in Table 3. In general, the transitional substitution is
higher than the transversional substitution in both matK
and rbcL regions. However, matK region exhibited a
higher substitution rate from G to A. In contrast, the
changing frequency from C to T, T to C, and A to G of
rbcL was higher than that of matK.
Furthermore, two parameters were utilized to examine

the inter-specific divergence; consisted of average inter-
specific distance and range of inter-specific distance. An-
other two parameters, namely, average intra-specific dis-
tance and range of intra-specific distance, were used to
evaluate the intra-specific divergence. The obtained re-
sults revealed that matK possessed the higher intraspe-
cific distance and lower interspecific distance (Table 4).

Phylogenetic analyses
By employing ML, 21 accessions were successfully classi-
fied into five separate groups, which were also corre-
sponding to the five species identified by BLAST (Table
2). However, when utilizing NJ, only four species: Anoe-
tochilius pingbianeisis, Goodyere velunitna, Goodyera
schlechtendalinana, and Anoectochilus roxburghii, were
correctly grouped, while the remaining accessions be-
longing to Ludisia discolor were divided into two sub-
groups (Fig. 2).
In contrast to rbcL region, phylogenetic analysis of

matK was failed to show any clear grouping for both
ML and NJ analysis (Fig. 3).
The combination of two barcode regions was unsuc-

cessful to increase the species power resolution com-
pared to the single use. The phylogenetic tree was
resulted in one and two separate branches when using
ML and NJ methods, respectively (Fig. 4). Mantel’s test
also failed to find the relatedness between matK and
rbcL barcodes with P value = 0.883.

Discussion
Species identification
Although numerous studies mentioned the low sequen-
cing effectiveness of matK region in vascular plants in
the comparison to rbcL [24], no problem was encoun-
tered on our DNA sequencing of both genes. The
BLAST results were consistent in searching for hom-
ology of both matK and rbcL genes. On the other hand,
the BOLD results were totally different. The low accur-
acy of BOLD could be originated from the small size
and insufficient completeness of their database. Conse-
quently, the missing species in the database cannot be
identified and the method may assign the query se-
quence to an incorrect species [25]. Similar result was
previously reported on Chenopodium murale [26]. Their
study reported that when using BLAST, the specimen
was identified as Chenopodium murale for both matK
and rbcL gene with 100% sequence similarity. Whereas
when using BOLD, rbcL gene showed high similarity,
ranged from 96.3 to 100% with different species such as
C. ambrosiodies, C. album, and C. ficifolium.

Estimation of sequence divergence
In molecular evolution study, estimation of nucleotide
substitution is vital to show the presence of genetic di-
vergence. In our study, the divergence value of matK
and rbcL regions ranged from 0 to 0.14 and 0 to 0.05, re-
spectively. This value is significantly lower than previous
data reported by Sikdar and colleagues when analyzing
46 rbcL sequences and 42 matK sequences of 21 species
in Fabaceae family [22]. Higher divergence of matK
marker has been widely reported and made matK being
considered as highly potential barcoding regions for sys-
tematic and evolution study in plants [27]. For example,
matK was proved to be more divergent than rbcL at
both intra-specificity and inter-specificity in a study of
the rbcL and matK region effectiveness for 490 vascular
plant species [12].
Two parameters in this study were utilized to examine

the inter-specific divergence: average inter-specific dis-
tance and range of inter-specific distance. Another two
parameters were used to evaluate intra-specific diver-
gence, namely, average intra-specific distance, and range
of intra-specific distance. In general, a desirable barcode
gene should have high inter-specific divergence and low

Table 3 Pattern of nucleotide substitution of matK and rbcL
regions (in percentage)

matK rbcL

A T C G A T C G

A - 9.27 4.07 8.36 - 6.06 3.82 12.87

T 7.43 - 7.67 3.44 5.68 - 12.84 5.59

C 7.34 17.45 - 3.44 5.68 20.36 - 5.59

G 18.10 9.27 4.07 - 12.36 6.06 3.82 -

Note: Substitution pattern and rates were estimated under the Tamura-Nei
(1993) model. Rates of different transitional substitutions are shown in bold
and those of transversional substitutions are shown in italics

Table 4 Estimates of average evolutionary divergence of matK
and rbcL sequences

Parameters matK rbcL

Range of intraspecific distance 0.01-0.04 0-0.01

Range of interspecific distance 0.0219-0.0496 0.003-0.112

Intraspecific distance (mean) 0.025 0.0025

Interspecific distance (mean) 0.034 0.051
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intra-specific divergence; thus, rbcL is superior to matK
in this jewel orchid study. A study on several medical
plants also revealed that rbcL has lowest intra-specific
distance in the comparison to other common barcode
regions in plant study such as ITS, ITS2, psbA-trnH,
ycf5, and rpoC1 [28]. Ideally, the interspecific distance
value of DNA barcode should be higher than that of in-
traspecific distance to produce non-overlapping value or
“barcoding gap,” which in turn will increase the discrim-
ination power of barcode in classification study. How-
ever, the barcode gap is absent in this study, suggesting
that the studied species are closely related.

Phylogenetic analyses
The resolution capacity of a barcode is its ability to dif-
ferentiate and identify species based on interspecific dif-
ferences among DNA sequences. A species is considered
as resolved if its individuals construct a specific mono-
phyletic branch. The result shows that ML is more ef-
fective in species classification of jewel orchid. Although
both ML and NJ are commonly used in phylogenetic
analysis, NJ can be easily performed in a short time with

personal computer while ML is considered as profes-
sional method in phylogenetic analysis. ML could con-
sider the possibility for all events happening
simultaneously and produced the best tree, supported at
higher probability in comparison to other methods [29].
In which the homologous variations from alignment re-
sults will be focused. This method has been used to
identify several plants such as Epimedium elatum [30].
The evolution of matK region is considered as the

fastest in plastid genome and the sequence is highly
similar to COI sequence in animal which is commonly
used as key barcode region in animal identification.
However, in contrast to rbcL region, phylogenetic ana-
lysis of matK did not show any clear group for both ML
and NJ analysis. This is also supported by Mantel’s test.
Numerous studies have been reported superiority of
rbcL in plant classification such as in Palmae family [24];
Codiaeum varieagatum [18]; and Ranunculaceae family
[31]. Similarly, when Maloukh and colleagues studied
the discriminatory power for authentication purpose of
DNA barcode on 51 plant species in United Arab Emir-
ates, rbcL successfully identified 100% (51/51) plant

Fig. 2 Phylogenetic tree based on rbcL region of 21 jewel orchid accessions by maximum likelihood (A) and neighbor joining (B). The value in
horizontal bar explains the length of the branch, which represents the number of nucleotide substitution

Fig. 3 Phylogenetic tree based on matK region of 21 jewel orchid accessions by maximum likelihood (A) and neighbor joining (B). The value in
horizontal bar explains the length of the branch, which representing the number of nucleotide substitution
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species including 11 monocots and 40 eudicots plant,
whereas matK resulted in only 24.45% (14/51) of correct
species identification [32]. Different DNA barcode
markers could affect the resulted phylogenetic tree. A
study in Dipterocarpaceae family has shown inconsist-
ency of the phylogenetic tree built by rbcL and matK
genes [33]. Another study on Casuarinaceae found that
matK gene gave higher resolution than rbcL [34]. A re-
search group in Vietnam also reported that matK region
was a more reliable marker than rbcL on Hopea chinesis
[35].
The combination of multi loci barcodes could improve

the species classification [9] and several studies have
proven this idea [35–37]. In our study, however, the
combination of two barcode region failed to increase the
species differentiation power compared to the single
one. Previous researches on different trees also reported
this phenomenon. For example, a 2019 study on Ranun-
culanceae family in China showed that the combination
of matK and rbcL showed lower species resolution in
contrast to rbcL alone for both ML and NJ analysis [31].

Conclusion
Both matK and rbcL barcode loci could be used as a
complementary tool for jewel orchid identification; how-
ever, the effectiveness of each locus should be examined
adequately case by case. The combination of two bar-
code regions was not better than the single one. The re-
sults suggest that the discrimination of rbcL locus is
superior to matK locus. Future studies combined with
additional barcode loci are necessary to develop a better
and more effective differentiation method among differ-
ent species of jewel orchid.
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